Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biotechnol Lett ; 39(2): 283-288, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27783176

RESUMO

OBJECTIVES: To explore systemic effects of mutations in the UDP-N-acetylmuramoylalanyl-D-glutamate 2,6-diaminopimelate ligase (MurE) of Corynebacterium glutamicum, that leads to extracellular L-lysine accumulation by this bacterium. RESULTS: The analysis of a mutant cohort of C. glutamicum strains carrying all possible 20 amino acids at position 81 of MurE revealed unexpected effects on cellular properties. With increasing L-lysine accumulation the growth rate of the producing strain is reduced. A dynamic flux balance analysis including the flux over MurE fully supports this finding and suggests that further reductions at this flux control point would enhance L-lysine accumulation even further. The strain carrying the best MurE variant MurE-G81K produces 37 mM L-lysine with a yield of 0.17 g/g (L-lysine·HCl/glucose·H2O), bearing no other genetic modification. Interestingly, among the strains with high L-lysine titers, strain variants occur which, despite possessing the desired amino acid substitutions in MurE, have regained close to normal growth and correspondingly lower L-lysine accumulation. Genome analyses of such variants revealed the transposition of mobile genetic elements which apparently annulled the favorable consequences of the MurE mutations on L-lysine formation. CONCLUSION: MurE is an attractive target to achieve high L-lysine accumulation, and product formation is inversely related to the specific growth rate. Moreover, single point mutations leading to elevated L-lysine titers may cause systemic effects on different levels comprising also major genome modifications. The latter caused by the activity of mobile genetic elements, most likely due to the stress conditions being characteristic for microbial metabolite producers.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/metabolismo , Lisina/metabolismo , Peptídeo Sintases/metabolismo , Proteínas de Bactérias/genética , Peptídeo Sintases/genética
2.
Microb Cell Fact ; 14: 79, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26062542

RESUMO

BACKGROUND: Microbes are extensively engineered to produce compounds of biotechnological or pharmaceutical interest. However, functional integration of synthetic pathways into the respective host cell metabolism and optimization of heterologous gene expression for achieving high product titers is still a challenging task. In this manuscript, we describe the optimization of a tetracistronic operon for the microbial production of the plant-derived phenylpropanoid p-coumaryl alcohol in Escherichia coli. RESULTS: Basis for the construction of a p-coumaryl alcohol producing strain was the development of Operon-PLICing as method for the rapid combinatorial assembly of synthetic operons. This method is based on the chemical cleavage reaction of phosphorothioate bonds in an iodine/ethanol solution to generate complementary, single-stranded overhangs and subsequent hybridization of multiple DNA-fragments. Furthermore, during the assembly of these DNA-fragments, Operon-PLICing offers the opportunity for balancing gene expression of all pathway genes on the level of translation for maximizing product titers by varying the spacing between the Shine-Dalgarno sequence and START codon. With Operon-PLICing, 81 different clones, each one carrying a different p-coumaryl alcohol operon, were individually constructed and screened for p-coumaryl alcohol formation within a few days. The absolute product titer of the best five variants ranged from 48 to 52 mg/L p-coumaryl alcohol without any further optimization of growth and production conditions. CONCLUSIONS: Operon-PLICing is sequence-independent and thus does not require any specific recognition or target sequences for enzymatic activities since all hybridization sites can be arbitrarily selected. In fact, after PCR-amplification, no endonucleases or ligases, frequently used in other methods, are needed. The modularity, simplicity and robustness of Operon-PLICing would be perfectly suited for an automation of cloning in the microtiter plate format.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Propionatos/metabolismo , Ácidos Cumáricos , Óperon
3.
ACS Synth Biol ; 10(6): 1308-1319, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34075749

RESUMO

Synthetic microbial cocultures carry enormous potential for applied biotechnology and are increasingly the subject of fundamental research. So far, most cocultures have been designed and characterized based on bulk cultivations without considering the potentially highly heterogeneous and diverse single-cell behavior. However, an in-depth understanding of cocultures including their interacting single cells is indispensable for the development of novel cultivation approaches and control of cocultures. We present the development, validation, and experimental characterization of an optochemically controllable bacterial coculture on a microcolony level consisting of two Corynebacterium glutamicum strains. Our coculture combines an l-lysine auxotrophic strain together with a l-lysine-producing variant carrying the genetically IPTG-mediated induction of l-lysine production. We implemented two control approaches utilizing IPTG as inducer molecule. First, unmodified IPTG was supplemented to the culture enabling a medium-based control of the production of l-lysine, which serves as the main interacting component. Second, optochemical control was successfully performed by utilizing photocaged IPTG activated by appropriate illumination. Both control strategies were validated studying cellular growth on a microcolony level. The novel microfluidic single-cell cultivation strategies applied in this work can serve as a blueprint to validate cellular control strategies of synthetic mono- and cocultures with single-cell resolution at defined environmental conditions.


Assuntos
Proliferação de Células/efeitos da radiação , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica/métodos , Interações Microbianas/efeitos da radiação , Raios Ultravioleta , Biotecnologia/métodos , Proliferação de Células/genética , Técnicas de Cocultura/métodos , Corynebacterium glutamicum/classificação , Meios de Cultura/química , Fluorescência , Isopropiltiogalactosídeo/genética , Isopropiltiogalactosídeo/metabolismo , Lisina/biossíntese , Interações Microbianas/genética , Técnicas Analíticas Microfluídicas/métodos , Microrganismos Geneticamente Modificados
4.
Nat Commun ; 11(1): 4851, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978386

RESUMO

Cell factories converting bio-based precursors to chemicals present an attractive avenue to a sustainable economy, yet screening of genetically diverse strain libraries to identify the best-performing whole-cell biocatalysts is a low-throughput endeavor. For this reason, transcriptional biosensors attract attention as they allow the screening of vast libraries when used in combination with fluorescence-activated cell sorting (FACS). However, broad ligand specificity of transcriptional regulators (TRs) often prohibits the development of such ultra-high-throughput screens. Here, we solve the structure of the TR LysG of Corynebacterium glutamicum, which detects all three basic amino acids. Based on this information, we follow a semi-rational engineering approach using a FACS-based screening/counterscreening strategy to generate an L-lysine insensitive LysG-based biosensor. This biosensor can be used to isolate L-histidine-producing strains by FACS, showing that TR engineering towards a more focused ligand spectrum can expand the scope of application of such metabolite sensors.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/química , Proteínas de Bactérias/química , Técnicas Biossensoriais/métodos , Ligantes , Engenharia Metabólica/métodos , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Cristalografia , Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Lisina/metabolismo , Técnicas Analíticas Microfluídicas , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Termodinâmica
5.
ACS Synth Biol ; 8(8): 1847-1857, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31268296

RESUMO

Transcriptional biosensors emerged as powerful tools for protein and strain engineering as they link inconspicuous production phenotypes to easily measurable output signals such as fluorescence. When combined with fluorescence-activated cell sorting, transcriptional biosensors enable high throughput screening of vast mutant libraries. Interestingly, even though many published manuscripts describe the construction and characterization of transcriptional biosensors, only very few studies report the successful application of transcriptional biosensors in such high-throughput screening campaigns. Here, we describe construction and characterization of the trans-cinnamic acid responsive transcriptional biosensor pSenCA for Escherichia coli and its application in a FACS based screen. In this context, we focus on essential methodological challenges during the development of such biosensor-guided high-throughput screens such as biosensor cross-talk between producing and nonproducing cells, which could be minimized by optimization of expression and cultivation conditions. The optimized conditions were applied in a five-step FACS campaign and proved suitable to isolate phenylalanine ammonia lyase variants with improved activity in E. coli and in vitro. Findings from this study will help researchers who want to profit from the unmatched throughput of fluorescence-activated cell sorting by using transcriptional biosensors for their enzyme and strain engineering campaigns.


Assuntos
Técnicas Biossensoriais/métodos , Biologia Computacional , Escherichia coli/metabolismo , Citometria de Fluxo , Ensaios de Triagem em Larga Escala , Engenharia de Proteínas/métodos
6.
Metab Eng Commun ; 9: e00090, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31016135

RESUMO

Corynebacterium glutamicum can grow on d-xylose as sole carbon and energy source via the five-step Weimberg pathway when the pentacistronic xylXABCD operon from Caulobacter crescentus is heterologously expressed. More recently, it could be demonstrated that the C. glutamicum wild type accumulates the Weimberg pathway intermediate d-xylonate when cultivated in the presence of d-xylose. Reason for this is the activity of the endogenous dehydrogenase IolG, which can also oxidize d-xylose. This raised the question whether additional endogenous enzymes in C. glutamicum contribute to the catabolization of d-xylose via the Weimberg pathway. In this study, analysis of the C. glutamicum genome in combination with systematic reduction of the heterologous xylXABCD operon revealed that the hitherto unknown and endogenous dehydrogenase KsaD (Cg0535) can also oxidize α-ketoglutarate semialdehyde to the tricarboxylic acid cycle intermediate α-ketoglutarate, the final enzymatic step of the Weimberg pathway. Furthermore, heterologous expression of either xylX or xylD, encoding for the two dehydratases of the Weimberg pathway in C. crescentus, is sufficient for enabling C. glutamicum to grow on d-xylose as sole carbon and energy source. Finally, several variants for the carbon-efficient microbial production of α-ketoglutarate from d-xylose were constructed. In comparison to cultivation solely on d-glucose, the best strain accumulated up to 1.5-fold more α-ketoglutarate in d-xylose/d-glucose mixtures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA