Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(26): e2300394, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36950767

RESUMO

Hierarchical micro/nanostructures are constructed by micro-scaled objects with nanoarchitectures belonging to an interesting class of crystalline materials that has significant applications in diverse fields. Featured with a large surface-to-volume ratio, facile mass transportation, high stability against aggregation, structurally enhanced adsorption, and catalytical performances, three dimenisional (3D) hierarchical metal oxides have been considered as versatile functional materials for waste-water treatment. Due to the ineffectiveness of traditional water purification protocols for reclamation of water, lately, the use of hierarchical metal oxides has emerged as an appealing platform for the remediation of water pollution owing to their fascinating and tailorable physiochemical properties. The present review highlights various approaches to the tunable synthesis of hierarchical structures along with their surface modification strategies to enhance their efficiencies for the removal of different noxious substances. Besides, their applications for the eradication of organic and inorganic contaminants have been discussed comprehensively with their plausible mechanistic pathways. Finally, overlooked aspects in this field as well as the major roadblocks to the implementation of these metal oxide architectures for large-scale treatment of wastewater are provided here. Moreover, the potential ways to tackle these issues are also presented which may be useful for the transformation of current water treatment technologies.

2.
J Environ Manage ; 301: 113821, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34731966

RESUMO

Despite significant advancements in modern agricultural practices, efficient handling of pesticides is a must as they are continuously defiling our terrestrial as well as aquatic life. During the last couple of decades, substantial efforts by various research groups have been devoted to find innovative solutions to remove pesticides from our environment in a greener way. In this regard, functionalized silica nanoparticles (NPs) have gained considerable attention of scientific community due to their notable properties such as amenable design, large surface area as well as fine-tunable and uniform pore structures which make them an ideal material for pesticides removal. The present review aims to proffer current scientific progress attained by silica-based nanostructures as an excellent material for effective removal of noxious agrochemicals. Further, a brief discussion on the synthetic strategies as well as intrinsic benefits associated with different morphologies of silica have also been highlighted in this article. It also summarizes the recent reports on silica assisted degradation of pesticides via enzymatic, chemical as well as advanced oxidation protocols. Additionally, it presents a critical analysis of different support materials for decontamination of our ecosystem. The review concludes with potential challenges, their possible solutions along with key knowledge gaps and future research directions for successful deployment of silica supported materials in degradation of pesticides at commercial scale.


Assuntos
Nanopartículas , Nanoestruturas , Praguicidas , Ecossistema , Dióxido de Silício
3.
Nanoscale ; 15(34): 14007-14017, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37539685

RESUMO

In this work, we fabricated a versatile and noble metal free copper-based heterogeneous photocatalyst, representing a green shift away from precious group metals such as Ir, Ru, Pt, which have been widely utilized as photocatalysts. The successfully synthesized and characterized copper photocatalyst was employed to establish a cross dehydrogenative coupling via C-H activation between tertiary amines and carbon nucleophiles. The highly efficient copper-based photocatalyst was characterized by numerous physico-chemical techniques, which confirmed its successful formation as well as its high activity. Inductively coupled plasma (ICP-OES) analysis revealed that the composite Cu@Xantphos@ASMNPs had a very high loading of 0.423 mmol g-1 of copper. The magnetic Cu@Xantphos@ASMNPs were utilized as a potential heterogeneous photocatalyst for the very facile and regioselective conversion of aryl tetrahydroqinoline to the respective nitroalkyl aryl tetrahydroisoquinoline in high yield using air as an oxidant and methanol as a green solvent with irradiation with visible light under mild reaction conditions. Additionally, the catalyst shows exceptional chemical stability and reusability without any agglomeration even after several cycles of use, which is one of the key features of this material, rendering it a potential candidate from economic and environmental perspectives.

4.
Chem Commun (Camb) ; 58(81): 11354-11377, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36148784

RESUMO

To date, remarkable progress has been achieved in the development of photocatalysts owing to their high activity, selectivity, and tunable light absorption in the visible light range. Recently, heterogeneous photocatalytic systems have emerged as potential candidates due to their beneficial attributes (e.g., high surface area, ease of functionalization and facile separation). Herein, we provide a concise overview of the rational design of heterogeneous photocatalysts by grafting photoactive complexes on heterogeneous support matrices via covalent grafting and their detailed characterization techniques, which have been followed by the landmark examples of their applications. Also, major challenges and opportunities in the forthcoming progress of these appealing areas are emphasised.


Assuntos
Complexos de Coordenação , Catálise , Luz
5.
Dalton Trans ; 51(6): 2452-2463, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35048925

RESUMO

In this work, we have reported a noble metal free heterogeneous photocatalyst to carry out direct (het)arene C-H arylation and solvent-free CO2 capture via single-electron transfer processes at room temperature and under pressure. The catalytic system comprises a cobalt(III) complex grafted over the silica coated magnetic support for the efficient recovery of the photocatalytic moiety without hampering its light-harvesting capability. The novel Earth-abundant cobalt(III) based photocatalyst possesses various fascinating properties such as high surface area to volume ratios, large pore volume, crystalline behaviour, high metal loading, excellent stability and reusability. The general efficacy of the highly abundant and low-cost cobalt based heterogeneous nanocatalyst was checked for the selective conversion of aryldiazonium salts into synthetically and pharmaceutically significant biaryl motifs under ambient conditions upon irradiation with visible light. The highly efficient photocatalytic conversion of carbon dioxide (CO2) to a value-added chemical was accomplished under mild reaction conditions with high selectivity, showing the added benefit of operational simplicity.

6.
J Reprod Infertil ; 13(1): 53-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23926524

RESUMO

BACKGROUND: Vitrification has proven to be more effective than slow freezing methods to cryopreserve mammalian oocytes. The objectives of this study were to evaluate the effects of vitrification on immature and in vitro matured, denuded and cumulus compact goat oocytes and their subsequent fertilization. METHODS: Oocytes were either cryopreserved as immature cumulus compact (IMCC) (n=98 Exp 1; 102 Exp 2) and immature denuded (IMDN) (n=127 Exp 1; 109 Exp 2) or were first matured in vitro for 28 h and then cryopreserved as mature cumulus compact (MCC) (n=109 Exp 1; 89 Exp 2) or mature denuded (MDN) (n=112 Exp 1; 110 Exp 2) oocytes in four groups. The vitrification solution comprised of Dulbecco's phosphate buffered saline supplemented with 0.5% sucrose, 0.4% bovine serum albumin and 8 M propylene glycol. After 7 days of cryopreservation in liquid nitrogen, oocytes in all groups were evaluated for normal morphologic survival and in vitro maturation (Experiment 1) and fertilization in vitro using epididymal buck spermatozoa (Experiment 2). RESULTS: The number of oocytes retaining normal morphology was significantly higher (p <0.05) for cumulus compact oocytes (IMCC: 94.12% vs. IMDN: 89.22%, experiment 1 and MCC: 87.80% vs. MDN: 82.17%, experiment 2) compared to the denuded oocytes. The in vitro maturation of oocytes was highest for non-vitrified control oocytes. The maturation of vitrified IMCC oocytes was significantly higher than IMDN and their fertilizability was higher than MCC and MDN oocytes. CONCLUSION: The results suggest that immature cumulus compact goat oocytes better tolerate cryopreservation stress by vitrification in terms of fertilization rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA