Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 55(8): 2884-8, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26773413

RESUMO

Tyrosinases mediate the ortho-hydroxylation and two-electron oxidation of monophenols to ortho-quinones. Catechol oxidases only catalyze the oxidation of diphenols. Although it is of significant interest, the origin of the functional discrimination between tyrosinases and catechol oxidases has been unclear. Recently, it has been postulated that a glutamate and an asparagine bind and activate a conserved water molecule towards deprotonation of monophenols. Here we demonstrate for the first time that a polyphenoloxidase, which exhibits only diphenolase activity, can be transformed to a tyrosinase by mutation to introduce an asparagine. The asparagine and a conserved glutamate are necessary to properly orient the conserved water in order to abstract a proton from the monophenol. These results provide direct evidence for the crucial importance of a proton shuttle for tyrosinase activity of type 3 copper proteins, allowing a consistent understanding of their different chemical reactivities.


Assuntos
Asparagina/química , Catecol Oxidase/química , Monofenol Mono-Oxigenase/química , Modelos Moleculares
2.
Food Chem ; 183: 49-57, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25863609

RESUMO

Polyphenoloxidases (PPO) of the type-3 copper protein family are considered to be catecholoxidases catalyzing the oxidation of o-diphenols to their corresponding quinones. PPO from Grenache grapes has recently been reported to display only diphenolase activity. In contrast, we have characterized PPOs from Dornfelder and Riesling grapes which display both monophenolase and diphenolase activity. Ultracentrifugation and size exclusion chromatography indicated that both PPOs occur as monomers with Mr of about 38kDa. Non-reducing SDS-PAGE shows two bands of about 38kDa exhibiting strong activity. Remarkably, three bands up to 60kDa displayed only very weak PPO activity, supporting the hypothesis that the C-terminal domain covers the entrance to the active site. Molecular dynamic analysis indicated that the hydroxyl group of monophenolic substrates can bind to CuA after the flexible but sterically hindering Phe 259 swings away on a picosecond time scale.


Assuntos
Catecol Oxidase/química , Vitis/química , Vinho/análise , Catálise , Cobre/análise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA