Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 617(7960): 386-394, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100912

RESUMO

Inflammation is a complex physiological process triggered in response to harmful stimuli1. It involves cells of the immune system capable of clearing sources of injury and damaged tissues. Excessive inflammation can occur as a result of infection and is a hallmark of several diseases2-4. The molecular bases underlying inflammatory responses are not fully understood. Here we show that the cell surface glycoprotein CD44, which marks the acquisition of distinct cell phenotypes in the context of development, immunity and cancer progression, mediates the uptake of metals including copper. We identify a pool of chemically reactive copper(II) in mitochondria of inflammatory macrophages that catalyses NAD(H) redox cycling by activating hydrogen peroxide. Maintenance of NAD+ enables metabolic and epigenetic programming towards the inflammatory state. Targeting mitochondrial copper(II) with supformin (LCC-12), a rationally designed dimer of metformin, induces a reduction of the NAD(H) pool, leading to metabolic and epigenetic states that oppose macrophage activation. LCC-12 interferes with cell plasticity in other settings and reduces inflammation in mouse models of bacterial and viral infections. Our work highlights the central role of copper as a regulator of cell plasticity and unveils a therapeutic strategy based on metabolic reprogramming and the control of epigenetic cell states.


Assuntos
Plasticidade Celular , Cobre , Inflamação , Transdução de Sinais , Animais , Camundongos , Cobre/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , NAD/metabolismo , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Peróxido de Hidrogênio/metabolismo , Epigênese Genética/efeitos dos fármacos , Metformina/análogos & derivados , Oxirredução , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/genética , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética
2.
Chembiochem ; 25(9): e202400211, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38530090

RESUMO

This symposium is the 5th PSL (Paris Sciences & Lettres) Chemical Biology meeting (2015, 2016, 2019, 2023, 2024) held at Institut Curie. This initiative originally started at Institut de Chimie des Substances Naturelles (ICSN) in Gif-sur-Yvette, with a strong focus on chemistry. It was then continued at the Institut Curie (2015) covering a larger scope, before becoming the official PSL Chemical Biology meeting. This latest edition hosted around 150 participants and was focused on the burgeoning field of ferroptosis, its mechanism and implications in health and disease. While not initially planned, it was felt that the next large Ferroptosis venue (CSHA, China) would not happen before late 2024. A discussion involving Conrad, Birsoy, Ubellacker, Brabletz and Rodriguez next to lake Como in Italy sponsored by the DKFZ, prompted us to fill in this gap and to organize a Ferroptosis meeting in Paris beforehand.


Assuntos
Ferroptose , Ferroptose/efeitos dos fármacos , Humanos , Animais
3.
Chembiochem ; 24(8): e202300093, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36942862

RESUMO

This symposium is the third PSL (Paris Sciences & Lettres) Chemical Biology meeting (2016, 2019, 2023) held at Institut Curie. This initiative originally started at Institut de Chimie des Substances Naturelles (ICSN) in Gif-sur-Yvette (2013, 2014), under the directorship of Professor Max Malacria, with a strong focus on chemistry. It was then continued at the Institut Curie (2015) covering a larger scope, before becoming the official PSL Chemical Biology meeting. This latest edition was postponed twice for the reasons that we know. This has given us the opportunity to invite additional speakers of great standing. This year, Institut Curie hosted around 300 participants, including 220 on site and over 80 online. The pandemic has had, at least, the virtue of promoting online meetings, which we came to realize is not perfect but has its own merits. In particular, it enables those with restricted time and resources to take part in events and meetings, which can now accommodate unlimited participants. We apologize to all those who could not attend in person this time due to space limitation at Institut Curie.


Assuntos
Biologia , Humanos , Paris
4.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36835566

RESUMO

Circulating monocytes are recruited in damaged tissues to generate macrophages that modulate disease progression. Colony-stimulating factor-1 (CSF-1) promotes the generation of monocyte-derived macrophages, which involves caspase activation. Here, we demonstrate that activated caspase-3 and caspase-7 are located to the vicinity of the mitochondria in CSF1-treated human monocytes. Active caspase-7 cleaves p47PHOX at aspartate 34, which promotes the formation of the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase complex NOX2 and the production of cytosolic superoxide anions. Monocyte response to CSF-1 is altered in patients with a chronic granulomatous disease, which are constitutively defective in NOX2. Both caspase-7 down-regulation and radical oxygen species scavenging decrease the migration of CSF-1-induced macrophages. Inhibition or deletion of caspases prevents the development of lung fibrosis in mice exposed to bleomycin. Altogether, a non-conventional pathway that involves caspases and activates NOX2 is involved in CSF1-driven monocyte differentiation and could be therapeutically targeted to modulate macrophage polarization in damaged tissues.


Assuntos
Caspases , Fator Estimulador de Colônias de Macrófagos , Humanos , Animais , Camundongos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Caspase 7/metabolismo , Caspases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , NADPH Oxidases/metabolismo , Monócitos/metabolismo
5.
Angew Chem Int Ed Engl ; 61(32): e202205231, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612562

RESUMO

Interferons (IFN) are cytokines which, upon binding to cell surface receptors, trigger a series of downstream biochemical events including Janus Kinase (JAK) activation, phosphorylation of Signal Transducer and Activator of Transcription protein (STAT), translocation of pSTAT to the nucleus and transcriptional activation. Dysregulated IFN signalling has been linked to cancer progression and auto-immune diseases. Here, we report the serendipitous discovery of a small molecule that blocks IFNγ activation of JAK-STAT signalling. Further lead optimisation gave rise to a potent and more selective analogue that exerts its activity by a mechanism consistent with direct IFNγ targeting in vitro, which reduces bleeding in model of haemorrhagic colitis in vivo. This first-in-class small molecule also inhibits type I and III IFN-induced STAT phosphorylation in vitro. Our work provides the basis for the development of pan-IFN inhibitory drugs.


Assuntos
Interferons , Janus Quinases , Interferon gama , Interferons/metabolismo , Interferons/farmacologia , Fosforilação , Transdução de Sinais
6.
Adv Exp Med Biol ; 1301: 81-121, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34370289

RESUMO

Ferroptosis is a dedicated mode of cell death involving iron, reactive oxygen species and lipid peroxidation. Involved in processes such as glutathione metabolism, lysosomal iron retention or interference with lipid metabolism, leading either to activation or inhibition of ferroptosis. Given the implications of ferroptosis in diseases such as cancer, aging, Alzheimer and infectious diseases, new molecular mechanisms underlying ferroptosis and small molecules regulators that target those mechanisms have prompted a great deal of interest. Here, we discuss the current scenario of small molecules modulating ferroptosis and critically assess what is known about their mechanisms of action.


Assuntos
Ferroptose , Morte Celular , Humanos , Ferro , Peroxidação de Lipídeos , Espécies Reativas de Oxigênio
7.
Biochim Biophys Acta Gen Subj ; 1862(6): 1263-1275, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29524539

RESUMO

BACKGROUND: Targeting cells of the host immune system is a promising approach to fight against Influenza A virus (IAV) infection. Macrophage cells use the NADPH oxidase-2 (NOX2) enzymatic complex as a first line of defense against pathogens by generating superoxide ions O2- and releasing H2O2. Herein, we investigated whether targeting membrane -embedded NOX2 decreased IAV entry via raft domains and reduced inflammation in infected macrophages. METHODS: Confocal microscopy and western blots monitored levels of the viral nucleoprotein NP and p67phox, NOX2 activator subunit, Elisa assays quantified TNF-α levels in LPS or IAV-activated mouse or porcine alveolar macrophages pretreated with a fluorescent NOX inhibitor, called nanoshutter NS1. RESULTS: IAV infection in macrophages promoted p67phox translocation to the membrane, rafts clustering and activation of the NOX2 complex at early times. Disrupting rafts reduced intracellular viral NP. NS1 markedly reduced raft clustering and viral entry by binding to the C-terminal of NOX2 also characterized in vitro. NS1 decrease of TNF-α release depended on the cell type. CONCLUSION: NOX2 participated in IAV entry and raft-mediated endocytosis. NOX2 inhibition by NS1 reduced viral entry. NS1 competition with p67phox for NOX2 binding shown by in silico models and cell-free assays was in agreement with NS1 inhibiting p67phox translocation to membrane-embedded NOX2 in mouse and porcine macrophages. GENERAL SIGNIFICANCE: We introduce NS1 as a compound targeting NOX2, a critical enzyme controlling viral levels and inflammation in macrophages and discuss the therapeutic relevance of targeting the C-terminal of NADPH oxidases by probes like NS1 in viral infections.


Assuntos
Inflamação/imunologia , Macrófagos/imunologia , NADPH Oxidase 2/antagonistas & inibidores , Infecções por Orthomyxoviridae/imunologia , Fosfoproteínas/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Internalização do Vírus , Animais , Células Cultivadas , Inflamação/metabolismo , Inflamação/virologia , Vírus da Influenza A , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia
8.
Cell Mol Life Sci ; 71(12): 2289-97, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24448903

RESUMO

Apoptosis is a fundamental process for metazoan development. It is also relevant to the pathophysiology of immune diseases and cancers and to the outcome of cancer chemotherapies, as well as being a target for cancer therapies. Apoptosis involves intrinsic pathways typically initiated by DNA damaging agents and engaging mitochondria, and extrinsic pathways typically initiated by "death receptors" and their ligands TRAIL and TNF at the cell surface. Recently, we discovered the apoptotic ring, which microscopically looks like a nuclear annular staining early in apoptosis. This ring is, in three-dimensional space, a thick intranuclear shell consisting of epigenetic modifications including histone H2AX and DNA damage response (DDR) proteins. It excludes the DNA repair factors usually associated with γ-H2AX in the DDR nuclear foci. Here, we summarize our knowledge of the apoptotic ring, and discuss its biological and pathophysiological relevance, as well as its value as a potential pharmacodynamic biomarker for anticancer therapies.


Assuntos
Apoptose , Doenças Autoimunes/metabolismo , Núcleo Celular/metabolismo , Histonas/metabolismo , Neoplasias/metabolismo , Animais , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/terapia , Biomarcadores/metabolismo , Epigênese Genética , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia , Distribuição Tecidual
9.
Proc Natl Acad Sci U S A ; 109(32): 12866-72, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22753480

RESUMO

The "apoptotic ring" is characterized by the phosphorylation of histone H2AX at serine 139 (γ-H2AX) by DNA-dependent protein kinase (DNA-PK). The γ-H2AX apoptotic ring differs from the nuclear foci patterns observed in response to DNA-damaging agents. It contains phosphorylated DNA damage response proteins including activated Chk2, activated ATM, and activated DNA-PK itself but lacks MDC1 and 53BP1, which are required to initiate DNA repair. Because DNA-PK can phosphorylate heat shock protein 90α (HSP90α) in biochemical assays, we investigated whether HSP90α is involved in the apoptotic ring. Here we show that HSP90α is phosphorylated by DNA-PK on threonines 5 and 7 early during apoptosis and that both phosphorylated HSP90α and DNA-PK colocalize in the apoptotic ring. We also show that DNA-PK is a client of HSP90α and that HSP90α is required for full DNA-PK activation, γ-H2AX formation, DNA fragmentation, and apoptotic body formation. In contrast, HSP90 inhibition by geldanamycin markedly enhances TRAIL-induced DNA-PK and H2AX activation. Together, our results reveal that HSP90α is a substrate and chaperone of DNA-PK in the apoptotic response. The response of phosphorylated HSP90α to TRAIL and its localization to the γ-H2AX ring represent epigenetic features of apoptosis that offer insights for studying and monitoring nuclear apoptosis.


Assuntos
Apoptose/fisiologia , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Histonas/metabolismo , Western Blotting , Linhagem Celular Tumoral , Fragmentação do DNA , Proteína Quinase Ativada por DNA/genética , Ativação Enzimática/fisiologia , Citometria de Fluxo , Fluorometria , Humanos , Marcação In Situ das Extremidades Cortadas , Microscopia de Fluorescência , Fosforilação , RNA Interferente Pequeno/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
10.
Res Sq ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38659936

RESUMO

Iron catalyses the oxidation of lipids in biological membranes and promotes a form of cell death referred to as ferroptosis1-3. Identifying where this chemistry takes place in the cell can inform the design of drugs capable of inducing or inhibiting ferroptosis in various disease-relevant settings. Whereas genetic approaches have revealed underlying mechanisms of lipid peroxide detoxification1,4,5, small molecules can provide unparalleled spatiotemporal control of the chemistry at work6. Here, we show that the ferroptosis inhibitor liproxstatin-1 (Lip-1) exerts a protective activity by inactivating iron in lysosomes. Based on this, we designed the bifunctional compound fentomycin that targets phospholipids at the plasma membrane and activates iron in lysosomes upon endocytosis, promoting oxidative degradation of phospholipids and ferroptosis. Fentomycin effectively kills primary sarcoma and pancreatic ductal adenocarcinoma cells. It acts as a lipolysis-targeting chimera (LIPTAC), preferentially targeting iron-rich CD44high cell-subpopulations7,8 associated with the metastatic disease and drug resistance9,10. Furthermore, we demonstrate that fentomycin also depletes CD44high cells in vivo and reduces intranodal tumour growth in an immunocompetent murine model of breast cancer metastasis. These data demonstrate that lysosomal iron triggers ferroptosis and that lysosomal iron redox chemistry can be exploited for therapeutic benefits.

11.
Antioxidants (Basel) ; 12(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36830003

RESUMO

ROS in cancer cells play a key role in pathways regulating cell death, stemness maintenance, and metabolic reprogramming, all of which have been implicated in resistance to chemo/ immunotherapy. Adjusting ROS levels to reverse the resistance of cancer cells without impairing normal cell functions is a new therapeutic avenue. In this paper, we describe new inhibitors of NADPH oxidase (NOX), a key enzyme in many cells of the tumor microenvironment. The first inhibitor, called Nanoshutter-1, NS1, decreased the level of tumor-promoting "M2" macrophages differentiated from human blood monocytes. NS1 disrupted the active NADPH oxidase-2 (NOX2) complex at the membrane and in the mitochondria of the macrophages, as shown by confocal microscopy. As one of the characteristics of tumor invasion is hypoxia, we tested whether NS1 would affect vascular reactivity by reducing ROS or NO levels in wire and pressure myograph experiments on isolated blood vessels. The results show that NS1 vasodilated blood vessels and would likely reduce hypoxia. Finally, as both NOX2 and NOX4 are key proteins in tumors and their microenvironment, we investigated whether NS1 would probe these proteins differently. Models of NOX2 and NOX4 were generated by homology modeling, showing structural differences at their C-terminal NADPH site, in particular in their last Phe. Thus, the NADPH site presents an unexploited chemical space for addressing ligand specificity, which we exploited to design a novel NOX2-specific inhibitor targeting variable NOX2 residues. With the proper smart vehicle to target specific cells of the microenvironment as TAMs, NOX2-specific inhibitors could open the way to new precision therapies.

12.
EMBO Rep ; 10(8): 887-93, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19557000

RESUMO

Ataxia telangiectasia mutated (ATM), the deficiency of which causes a severe neurodegenerative disease, is a crucial mediator for the DNA damage response (DDR). As neurons have high rates of transcription that require topoisomerase I (TOP1), we investigated whether TOP1 cleavage complexes (TOP1cc)-which are potent transcription-blocking lesions-also produce transcription-dependent DNA double-strand breaks (DSBs) with ATM activation. We show the induction of DSBs and DDR activation in post-mitotic primary neurons and lymphocytes treated with camptothecin, with the induction of nuclear DDR foci containing activated ATM, gamma-H2AX (phosphorylated histone H2AX), activated CHK2 (checkpoint kinase 2), MDC1 (mediator of DNA damage checkpoint 1) and 53BP1 (p53 binding protein 1). The DSB-ATM-DDR pathway was suppressed by inhibiting transcription and gamma-H2AX signals were reduced by RNase H1 transfection, which removes transcription-mediated R-loops. Thus, we propose that Top1cc produce transcription arrests with R-loop formation and generate DSBs that activate ATM in post-mitotic cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Alfa-Amanitina/farmacologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Camptotecina/farmacologia , Células Cultivadas , Diclororribofuranosilbenzimidazol/farmacologia , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Ratos , Ribonuclease H/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transativadores/metabolismo , Transcrição Gênica/genética , Transcrição Gênica/fisiologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
13.
Antioxidants (Basel) ; 10(5)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064498

RESUMO

Specific inhibition of NADPH oxidases (NOX) and NO-synthases (NOS), two enzymes associated with redox stress in tumor cells, has aroused great pharmacological interest. Here, we show how these enzymes distinguish between isomeric 2'- and 3'-phosphate derivatives, a difference used to improve the specificity of inhibition by isolated 2'- and 3'-phosphate isomers of our NADPH analogue NS1. Both isomers become fluorescent upon binding to their target proteins as observed by in vitro assay and in vivo imaging. The 2'-phosphate isomer of NS1 exerted more pronounced effects on NOS and NOX-dependent physiological responses than the 3'-phosphate isomer did. Docking and molecular dynamics simulations explain this specificity at the level of the NADPH site of NOX and NOS, where conserved arginine residues distinguished between the 2'-phosphate over the 3'-phosphate group, in favor of the 2'-phosphate.

14.
Curr Opin Chem Biol ; 56: 42-50, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31978625

RESUMO

Cancers display intratumoral and intertumoral heterogeneity, which poses challenges to small-molecule intervention. Studying drug responses on a whole-genome and transcriptome level using next-generation sequencing has revolutionized our understanding of how small molecules intervene in cells, which helps us to study and potentially predict treatment outcomes. Some small molecules act directly at the genomic level by targeting DNA or chromatin proteins. Here, we review recent advances in establishing whole-genome and transcriptome maps of small-molecule targets, comprising chromatin components or downstream events. We also describe recent advances in studying drug responses using single-cell RNA and DNA sequencing. Furthermore, we discuss how this fundamental research can be taken forward to devise innovative personalized treatment modalities.


Assuntos
Antineoplásicos/química , Mapeamento Cromossômico/métodos , Neoplasias/genética , Bibliotecas de Moléculas Pequenas/química , Transcriptoma/genética , Antineoplásicos/farmacologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Quadruplex G , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Análise de Célula Única , Bibliotecas de Moléculas Pequenas/farmacologia
15.
FEBS Lett ; 582(2): 372-8, 2008 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-18166155

RESUMO

Caspase-2 exists as two main isoforms: the caspase-2L long isoform, which is pro-apoptotic, and the caspase-2S short isoform, which may be anti-apoptotic. Topoisomerase inhibitors drive inclusion of exon 9, specific for Casp-2S mRNA, and lower Casp-2L [corrected] mRNA and protein. With cell lines engineered to express various PKC isoforms, we demonstrate that PKC zeta, but not PKCalpha, positively regulates Casp-2S mRNA assembly triggered by topoisomerase inhibitors. In addition, exon 9 inclusion is lowered in mitosis but increased in the G1/S phase. Hence, the control of caspase-2 exon 9 inclusion by topoisomerase inhibitors depends on phosphorylation and/or dephosphorylation events, and on the cell cycle phase.


Assuntos
Processamento Alternativo , Caspase 2/metabolismo , DNA Topoisomerases/metabolismo , Proteína Quinase C/metabolismo , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células U937
17.
Cell Death Differ ; 24(8): 1337-1347, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28211870

RESUMO

Subtle caspase activation is associated with the differentiation of several myeloid lineages. A tightly orchestrated dance between caspase-3 activation and the chaperone HSP70 that migrates to the nucleus to protect the master regulator GATA-1 from cleavage transiently occurs in basophilic erythroblasts and may prepare nucleus and organelle expel that occurs at the terminal phase of erythroid differentiation. A spatially restricted activation of caspase-3 occurs in maturing megakaryocytes to promote proplatelet maturation and platelet shedding in the bloodstream. In a situation of acute platelet need, caspase-3 could be activated in response to IL-1α and promote megakaryocyte rupture. In peripheral blood monocytes, colony-stimulating factor-1 provokes the formation of a molecular platform in which caspase-8 is activated, which downregulates nuclear factor-kappa B (NF-κB) activity and activates downstream caspases whose target fragments such as those generated by nucleophosmin (NPM1) cleavage contribute to the generation of resting macrophages. Human monocytes secrete mature IL-1ß in response to lipopolysaccharide through an alternative inflammasome activation that involves caspase-8, a pathway that does not lead to cell death. Finally, active caspase-3 is part of the proteases contained in secretory granules of mast cells. Many questions remain on how these proteases are activated in myeloid cell lineages, which target proteins are cleaved, whereas other are protected from proteolysis, the precise role of cleaved proteins in cell differentiation and functions, and the link between these non-apoptotic functions of caspases and the death of these diverse cell types. Better understanding of these functions may generate therapeutic strategies to control cytopenias or modulate myeloid cell functions in various pathological situations.


Assuntos
Plaquetas/enzimologia , Caspase 3/genética , Eritroblastos/enzimologia , Macrófagos/enzimologia , Megacariócitos/enzimologia , Monócitos/enzimologia , Animais , Plaquetas/citologia , Caspase 3/metabolismo , Diferenciação Celular , Eritroblastos/citologia , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Macrófagos/citologia , Megacariócitos/citologia , Monócitos/citologia , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Transdução de Sinais
18.
Nat Commun ; 7: 10767, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26908133

RESUMO

The cytidine analogues azacytidine and 5-aza-2'-deoxycytidine (decitabine) are commonly used to treat myelodysplastic syndromes, with or without a myeloproliferative component. It remains unclear whether the response to these hypomethylating agents results from a cytotoxic or an epigenetic effect. In this study, we address this question in chronic myelomonocytic leukaemia. We describe a comprehensive analysis of the mutational landscape of these tumours, combining whole-exome and whole-genome sequencing. We identify an average of 14±5 somatic mutations in coding sequences of sorted monocyte DNA and the signatures of three mutational processes. Serial sequencing demonstrates that the response to hypomethylating agents is associated with changes in DNA methylation and gene expression, without any decrease in the mutation allele burden, nor prevention of new genetic alteration occurence. Our findings indicate that cytosine analogues restore a balanced haematopoiesis without decreasing the size of the mutated clone, arguing for a predominantly epigenetic effect.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia Mielomonocítica Crônica/genética , Mutação , Idoso , Idoso de 80 Anos ou mais , Alelos , Antimetabólitos Antineoplásicos/uso terapêutico , Azacitidina/uso terapêutico , Decitabina , Feminino , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Análise de Sequência de DNA , Análise de Sequência de RNA
19.
Oncogene ; 22(6): 935-46, 2003 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-12584573

RESUMO

Caspases have been shown to play important roles in apoptotic cell death, cytokine maturation and cell differentiation. However, the transcriptional regulation of the corresponding CASP genes remains poorly known. We describe a 5.1 kb fragment located upstream of the first translated exon in the human CASP-2 gene, which is known to encode caspase-2L and -2S protein isoforms. Transient transfection experiments, together with transcription start site mapping and transcript analysis, demonstrate that each caspase mRNA is initiated from separate promoter regions, and produced from alternative splicing events in these regions. The CASP-2L promoter is much stronger than the CASP-2S promoter, in good agreement with the respective transcript levels of the two caspases. In addition, several in-frame translational start sites can be identified for each isoform, one of which is common to both, present in the second common exon, and used efficiently. Surprisingly, the short isoform may also be initiated at a downstream AUG codon within the same exon. Thus, promoter strength, alternative transcriptional initiation and 5'-splicing events regulate the expression of the main caspase-2 isoforms that may be translated from alternative translation initiation codons.


Assuntos
Caspases/genética , Isoenzimas/genética , Regiões Promotoras Genéticas , Processamento Pós-Transcricional do RNA , Região 5'-Flanqueadora , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Caspase 2 , Códon , Precursores Enzimáticos/genética , Humanos , Análise de Sequência de DNA , Análise de Sequência de RNA
20.
Mol Cancer Res ; 2(1): 53-61, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14757846

RESUMO

We have recently shown that the topoisomerase II inhibitor, etoposide (VP16), could trigger caspase-2 pre-mRNA splicing in human leukemic cell lines. This leads to increased inclusion of exon 9, which is specifically inserted into the short caspase-2S isoform mRNA and absent from the long caspase-2L isoform mRNA. One of the consequences of this alternative splicing is a decrease in the total amount of the mature form of caspase-2L mRNA and protein. In this study, we analyzed the effects of several representative molecules of various classes of cytotoxic agents on caspase-2 pre-mRNA splicing in both U937 leukemic cells and in HeLa cervix carcinoma cells. Very strikingly, both topoisomerase I (camptothecin and homocamptothecin derivatives) and II (VP16, amsacrine, doxorubicin, mitoxantrone) inhibitors induced exon 9 inclusion. DNA intercalating glycosyl indolocarbazole derivatives as well as DNA alkylating agents, such as cisplatin and melphalan, antimetabolites like 5-fluorouracil, and mitotic spindle poisons like vinblastine had no effect. Therefore, both classes of DNA topoisomerases can control pre-mRNA splicing of the caspase-2 transcript. In addition, the splicing reaction brought about by camptothecin was hampered in human CEM/C2 and in murine P388-45R leukemic deficient in topoisomerase I activity. Conversely, VP16 did not trigger caspase-2 alternative splicing in human HL60/MX2 leukemic cells harboring a mutant topoisomerase II. Minigene transfection analysis revealed that topoisomerase inhibitors did not change the splicing profile when cis-acting elements in intron-9, reported to control exon 9 inclusion independently of drug treatment, were removed. Rather, our experiments suggest that exon 9 inclusion induced by topoisomerase inhibitors reflects the activity exerted by topoisomerase I or II on proteins that control splicing reactions, or their direct involvement in pre-mRNA splicing.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Cisteína Endopeptidases/genética , Inibidores Enzimáticos/farmacologia , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/genética , Inibidores da Topoisomerase I , Inibidores da Topoisomerase II , Antibióticos Antineoplásicos/farmacologia , Apoptose/fisiologia , Western Blotting , Caspase 2 , Linhagem Celular Tumoral/metabolismo , Reagentes de Ligações Cruzadas , Vetores Genéticos , Células HL-60 , Humanos , Inibidores da Síntese de Ácido Nucleico , Plasmídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA