Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(27): E6245-E6253, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915081

RESUMO

Microsporidia are parasitic fungi-like organisms that invade the interior of living cells and cause chronic disorders in a broad range of animals, including humans. These pathogens have the tiniest known genomes among eukaryotic species, for which they serve as a model for exploring the phenomenon of genome reduction in obligate intracellular parasites. Here we report a case study to show an apparent effect of overall genome reduction on the primary structure and activity of aminoacyl-tRNA synthetases, indispensable cellular proteins required for protein synthesis. We find that most microsporidian synthetases lack regulatory and eukaryote-specific appended domains and have a high degree of sequence variability in tRNA-binding and catalytic domains. In one synthetase, LeuRS, an apparent sequence degeneration annihilates the editing domain, a catalytic center responsible for the accurate selection of leucine for protein synthesis. Unlike accurate LeuRS synthetases from other eukaryotic species, microsporidian LeuRS is error-prone: apart from leucine, it occasionally uses its near-cognate substrates, such as norvaline, isoleucine, valine, and methionine. Mass spectrometry analysis of the microsporidium Vavraia culicis proteome reveals that nearly 6% of leucine residues are erroneously replaced by other amino acids. This remarkably high frequency of mistranslation is not limited to leucine codons and appears to be a general property of protein synthesis in microsporidian parasites. Taken together, our findings reveal that the microsporidian protein synthesis machinery is editing-deficient, and that the proteome of microsporidian parasites is more diverse than would be anticipated based on their genome sequences.


Assuntos
Aminoacil-tRNA Sintetases , Proteínas Fúngicas , Genoma Fúngico , Microsporida , Biossíntese de Proteínas/fisiologia , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Microsporida/genética , Microsporida/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
2.
EMBO J ; 30(9): 1818-29, 2011 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-21460798

RESUMO

The anaphase promoting complex (APC) is a ubiquitin ligase that promotes the degradation of cell-cycle regulators by the 26S proteasome. Cdc20 and Cdh1 are WD40-containing APC co-activators that bind destruction boxes (DB) and KEN boxes within substrates to recruit them to the APC for ubiquitination. Acm1 is an APC(Cdh1) inhibitor that utilizes a DB and a KEN box to bind Cdh1 and prevent substrate binding, although Acm1 itself is not a substrate. We investigated what differentiates an APC substrate from an inhibitor. We identified the Acm1 A-motif that interacts with Cdh1 and together with the DB and KEN box is required for APC(Cdh1) inhibition. A genetic screen identified Cdh1 WD40 domain residues important for Acm1 A-motif interaction and inhibition that appears to reside near Cdh1 residues important for DB recognition. Specific lysine insertion mutations within Acm1 promoted its ubiquitination by APC(Cdh1) whereas lysine removal from the APC substrate Hsl1 converted it into a potent APC(Cdh1) inhibitor. These findings suggest that tight Cdh1 binding combined with the inaccessibility of ubiquitinatable lysines contributes to pseudosubstrate inhibition of APC(Cdh1).


Assuntos
Modelos Biológicos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Proteínas Cdc20 , Proteínas Cdh1 , Proteínas de Ciclo Celular/metabolismo , Mutagênese , Plasmídeos/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Técnicas do Sistema de Duplo-Híbrido , Ubiquitinação
3.
Mol Biol Cell ; 18(12): 5139-53, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17942599

RESUMO

In the yeast Saccharomyces cerevisiae, a ring of myosin II forms in a septin-dependent manner at the budding site in late G1. This ring remains at the bud neck until the onset of cytokinesis, when actin is recruited to it. The actomyosin ring then contracts, septum formation occurs concurrently, and cytokinesis is soon completed. Deletion of MYO1 (the only myosin II gene) is lethal on rich medium in the W303 strain background and causes slow-growth and delayed-cell-separation phenotypes in the S288C strain background. These phenotypes can be suppressed by deletions of genes encoding nonessential components of the anaphase-promoting complex (APC/C). This suppression does not seem to result simply from a delay in mitotic exit, because overexpression of a nondegradable mitotic cyclin does not suppress the same phenotypes. Overexpression of either IQG1 or CYK3 also suppresses the myo1Delta phenotypes, and Iqg1p (an IQGAP protein) is increased in abundance and abnormally persistent after cytokinesis in APC/C mutants. In vitro assays showed that Iqg1p is ubiquitinated directly by APC/C(Cdh1) via a novel recognition sequence. A nondegradable Iqg1p (lacking this recognition sequence) can suppress the myo1Delta phenotypes even when expressed at relatively low levels. Together, the data suggest that compromise of APC/C function allows the accumulation of Iqg1p, which then promotes actomyosin-ring-independent cytokinesis at least in part by activation of Cyk3p.


Assuntos
Citocinese , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Actomiosina/metabolismo , Motivos de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Regulação Fúngica da Expressão Gênica , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação/genética , Cadeias Pesadas de Miosina/deficiência , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Fenótipo , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Ubiquitina/metabolismo , Proteínas Ativadoras de ras GTPase/genética
4.
Mol Cell Biol ; 25(10): 3906-13, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15870265

RESUMO

Ctk1 is a Saccharomyces cerevisiae cyclin-dependent protein kinase (CDK) that assembles with Ctk2 and Ctk3 to form an active protein kinase complex, CTDK-I. CTDK-I phosphorylates Ser2 within the RNA polymerase II C-terminal domain, an activity that is required for efficient transcriptional elongation and 3' RNA processing. Ctk1 contains a conserved T loop, which undergoes activating phosphorylation in other CDKs. We show that Ctk1 is phosphorylated on Thr-338 within the T loop. Mutation of this residue abolished Ctk1 kinase activity in vitro and resulted in a cold-sensitive phenotype. As with other yeast CDKs undergoing T-loop phosphorylation, Ctk1 phosphorylation on Thr-338 was dependent on the Cak1 protein kinase. Ctk1 isolated from cak1Delta cells was unphosphorylated and exhibited low protein kinase activity. Moreover, Cak1 directly phosphorylated Ctk1 in vitro. Unlike wild-type cells, cells expressing Ctk1(T338A) delayed growth at early stationary phase, did not show the increase in Ser2 phosphorylation that normally accompanies the transition from rapid growth to stationary phase, and had compromised transcriptional activation of two stationary-phase genes, CTT1 and SPI1. Therefore, Ctk1 phosphorylation on Thr-338 is carried out by Cak1 and is required for normal gene transcription during the transition into stationary phase.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Proteínas Quinases/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Ativação Enzimática , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Dados de Sequência Molecular , Fosforilação , Proteínas Quinases/química , Estrutura Terciária de Proteína , RNA Fúngico/genética , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Treonina/metabolismo , Ativação Transcricional/genética , Quinase Ativadora de Quinase Dependente de Ciclina
5.
Cell Signal ; 33: 41-48, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28189585

RESUMO

The anaphase-promoting complex (APC) is a ubiquitin ligase responsible for promoting the degradation of many cell cycle regulators. One of the activators and substrate-binding proteins for the APC is Cdc20. It has been shown previously that Cdc20 can promote its own degradation by the APC in normal cycling cells mainly through a cis-degradation mode (i.e. via an intramolecular mechanism). However, how Cdc20 is degraded during the spindle assembly checkpoint (SAC) is still not fully clear. In this study, we used a dual-Cdc20 system to investigate this issue and found that the cis-degradation mode is also the major pathway responsible for Cdc20 degradation during the SAC. In addition, we found that there is an inverse relationship between APCCdc20 activity and the transcriptional activity of the CDC20 promoter, which likely occurs through feedback regulation by APCCdc20 substrates, such as the cyclins Clb2 and Clb5. These findings contribute to our understanding of how the inhibition of APCCdc20 activity and enhanced Cdc20 degradation are required for proper spindle checkpoint arrest.


Assuntos
Proteínas Cdc20/genética , Regulação Fúngica da Expressão Gênica , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Transcrição Gênica , Motivos de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/química , Proteínas Cdc20/metabolismo , Regiões Promotoras Genéticas/genética , Proteólise , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
6.
BMC Biochem ; 6: 19, 2005 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-16191191

RESUMO

BACKGROUND: Normal cell cycle progression requires the precise activation and inactivation of cyclin-dependent protein kinases (CDKs), which consist of a CDK and a cyclin subunit. A novel cell cycle regulator called Speedy/Ringo shows no sequence similarity to cyclins, yet can directly bind to and activate CDKs. Speedy/Ringo proteins, which bind to and activate Cdc2 and Cdk2 in vitro, are required for the G2 to M transition during Xenopus oocyte maturation and for normal S-phase entry in cultured human cells. RESULTS: We have characterized the substrate specificity and enzymatic activity of human Cdk2-Speedy/Ringo A2 in order to gain insights into the possible functions of this complex. In contrast to Cdk2-cyclin A, which has a well-defined consensus target site ((S/T)PX(K/R)) that strongly favors substrates containing a lysine at the +3 position of substrates, Cdk2-Speedy/Ringo A2 displayed a broad substrate specificity at this position. Consequently, Cdk2-Ringo/Speedy A2 phosphorylated optimal Cdk2 substrates such as histone H1 and a KSPRK peptide poorly, only approximately 0.08% as well as Cdk2-cyclin A, but non-canonical Cdk2 substrates such as a KSPRY peptide relatively well, with an efficiency of approximately 80% compared to Cdk2-cyclin A. Cdk2-Speedy/Ringo A2 also phosphorylated authentic Cdk2 substrates, such as Cdc25 proteins, which contain non-canonical CDK phosphorylation sites, nearly as well as Cdk2-cyclin A. Phosphopeptide mapping indicated that Cdk2-Speedy/Ringo A2 and Cdk2-cyclin A phosphorylate distinct subsets of sites on Cdc25 proteins. Thus, the low activity that Cdk2-Speedy/Ringo A2 displays when assayed on conventional Cdk2 substrates may significantly underestimate the potential physiological importance of Cdk2-Speedy/Ringo A2 in phosphorylating key subsets of Cdk2 substrates. Unlike Cdk2-cyclin A, whose activity depends strongly on activating phosphorylation of Cdk2 on Thr-160, neither the overall catalytic activity nor the substrate recognition by Cdk2-Speedy/Ringo A2 was significantly affected by this phosphorylation. Furthermore, Cdk2-Speedy/Ringo A2 was not a suitable substrate for metazoan CAK (which phosphorylates Cdk2 at Thr-160), supporting the notion that Speedy/Ringo A2 activates Cdk2 in a CAK-independent manner. CONCLUSION: There are major differences in substrate preferences between CDK-Speedy/Ringo A2 and Cdk2-cyclin complexes. These differences may accommodate the CAK-independent activation of Cdk2 by Speedy/Ringo A2 and they raise the possibility that CDK-Speedy/Ringo A2 complexes could phosphorylate and regulate a subset of non-canonical CDK substrates, such as Cdc25 protein phosphatases, to control cell cycle progression.


Assuntos
Quinase 2 Dependente de Ciclina/química , Quinase 2 Dependente de Ciclina/genética , Substituição de Aminoácidos/fisiologia , Animais , Bovinos , Quinase 2 Dependente de Ciclina/metabolismo , Humanos , Fosforilação
7.
Mol Biol Cell ; 26(12): 2205-16, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25877870

RESUMO

The anaphase-promoting complex in partnership with its activator, Cdh1, is an E3 ubiquitin ligase responsible for targeting cell cycle proteins during G1 phase. In the budding yeast Saccharomyces cerevisiae, Cdh1 associates with the deubiquitinating enzyme Ubp15, but the significance of this interaction is unclear. To better understand the physiological role(s) of Ubp15, we examined cell cycle phenotypes of cells lacking Ubp15. We found that ubp15∆ cells exhibited delayed progression from G1 into S phase and increased sensitivity to the DNA synthesis inhibitor hydroxyurea. Both phenotypes of ubp15∆ cells were rescued by additional copies of the S-phase cyclin gene CLB5. Clb5 is an unstable protein targeted for proteasome-mediated degradation by several pathways. We found that during G1 phase, the APC(Cdh1)-mediated degradation of Clb5 was accelerated in ubp15∆ cells. Ubp15 interacted with Clb5 independent of Cdh1 and deubiquitinated Clb5 in a reconstituted system. Thus deubiquitination by Ubp15 counteracts APC activity toward cyclin Clb5 to allow Clb5 accumulation and a timely entry into S phase.


Assuntos
Proteínas Cdh1/metabolismo , Ciclina B/metabolismo , Endopeptidases/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteases Específicas de Ubiquitina/metabolismo , Endopeptidases/genética , Mutação , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
8.
PLoS One ; 7(10): e48020, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144720

RESUMO

The highly orchestrated progression of the cell cycle depends on the degradation of many regulatory proteins at different cell cycle stages. One of the key cell cycle ubiquitin ligases is the Skp1-cullin-F-box (SCF) complex. Acting in concert with the substrate-binding F-box protein Grr1, SCF(Grr1) promotes the degradation of cell cycle regulators as well as various metabolic enzymes. Using a yeast two-hybrid assay with a Grr1 derivative as the bait, we identified She3, which is an adaptor protein in the asymmetric mRNA transport system, as a novel Grr1 substrate. We generated stabilized She3 mutants, which no longer bound to Grr1, and found that the degradation of She3 is not required for regulating asymmetric mRNA transport. However, She3 stabilization leads to slower growth compared to wild-type cells in a co-culture assay, demonstrating that the degradation of She3 by Grr1 is required for optimal cell growth.


Assuntos
Proteínas F-Box/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas F-Box/genética , Immunoblotting , Microscopia de Fluorescência , Mutação , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Ligação Proteica/genética , Proteólise , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/genética
9.
PLoS One ; 7(9): e45895, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049888

RESUMO

The Anaphase-Promoting Complex/Cyclosome (APC/C) is an essential ubiquitin ligase that targets numerous proteins for proteasome-mediated degradation in mitosis and G1. To gain further insight into cellular pathways controlled by APC/C(Cdh1), we developed two complementary approaches to identify additional APC/C(Cdh1) substrates in budding yeast. First, we analyzed the stabilities of proteins that were expressed at the same time in the cell cycle as known APC/C substrates. Second, we screened for proteins capable of interacting with the Cdh1 substrate-binding protein in a yeast two-hybrid system. Here we characterize five potential APC/C substrates identified using these approaches: the transcription factors Tos4 and Pdr3; the mRNA processing factor Fir1; the spindle checkpoint protein kinase Mps1; and a protein of unknown function, Ybr138C. Analysis of the degradation motifs within these proteins revealed that the carboxyl-terminal KEN box and D-boxes of Tos4 are important for its interaction with Cdh1, whereas the N-terminal domain of Ybr138C is required for its instability. Functionally, we found that a stabilized form of Mps1 delayed cell division upon mild spindle disruption, and that elevated levels of Ybr138C reduced cell fitness. Interestingly, both Tos4 and Pdr3 have been implicated in the DNA damage response, whereas Mps1 regulates the spindle assembly checkpoint. Thus, the APC/C(Cdh1)-mediated degradation of these proteins may help to coordinate re-entry into the cell cycle following environmental stresses.


Assuntos
Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/fisiologia , Ciclossomo-Complexo Promotor de Anáfase , Proteínas Cdh1 , Ciclo Celular , Proliferação de Células , Deleção de Genes , Modelos Biológicos , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido , Complexos Ubiquitina-Proteína Ligase/química , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
10.
Mol Biol Cell ; 22(13): 2175-84, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21562221

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) is an essential ubiquitin ligase that targets cell cycle proteins for proteasome-mediated degradation in mitosis and G1. The APC regulates a number of cell cycle processes, including spindle assembly, mitotic exit, and cytokinesis, but the full range of its functions is still unknown. To better understand cellular pathways controlled by the APC, we performed a proteomic screen to identify additional APC substrates. We analyzed cell cycle-regulated proteins whose expression peaked during the period when other APC substrates were expressed. Subsequent analysis identified several proteins, including the transcriptional repressors Nrm1 and Yhp1, as authentic APC substrates. We found that APC(Cdh1) targeted Nrm1 and Yhp1 for degradation in early G1 through Destruction-box motifs and that the degradation of these repressors coincided with transcriptional activation of MBF and Mcm1 target genes, respectively. In addition, Nrm1 was stabilized by phosphorylation, most likely by the budding yeast cyclin-dependent protein kinase, Cdc28. We found that expression of stabilized forms of Nrm1 and Yhp1 resulted in reduced cell fitness, due at least in part to incomplete activation of G1-specific genes. Therefore, in addition to its known functions, APC-mediated targeting of Nrm1 and Yhp1 coordinates transcription of multiple genes in G1 with other cell cycle events.


Assuntos
Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas Cdh1 , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fase G1/genética , Fase G1/fisiologia , Proteína 1 de Manutenção de Minicromossomo , Mitose/genética , Mitose/fisiologia , Fosforilação/fisiologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteômica/métodos , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética , Ativação Transcricional/fisiologia , Complexos Ubiquitina-Proteína Ligase/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
Cell Cycle ; 7(19): 3037-47, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18802405

RESUMO

Cyclin-dependent kinases (CDKs) control cell cycle transitions and progression. In addition to their activation via binding to cyclins, CDKs can be activated via binding to an unrelated class of cell cycle regulators termed Speedy/Ringo (S/R) proteins. Although mammals contain at least five distinct Speedy/Ringo homologues, the specific functions of members of this growing family of CDK activators remain largely unknown. We investigated the cell cycle roles of human Speedy/Ringo C in HEK293 cells. Down-regulation of Speedy/Ringo C by RNA interference delayed S and G(2) progression whereas ectopic expression had the opposite effect, reducing S and G(2)/M populations. Double thymidine arrest and release experiments showed that overexpression of Speedy/Ringo C promoted late S phase progression. Using a novel three-color FACS protocol to determine the length of G(2) phase, we found that the suppression of Speedy/Ringo C by RNAi prolonged G(2) phase by approximately 30 min whereas ectopic expression of Speedy/Ringo C shortened G(2) phase by approximately 25 min. In addition, overexpression of Speedy/Ringo C disrupted the G(2) DNA damage checkpoint, increased cell death and caused a cell cycle delay at the G(1)-to-S transition. These observations indicate that CDK-Speedy/Ringo C complexes positively regulate cell cycle progression during the late S and G(2) phases of the cell cycle.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Fase G2 , Fase S , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Morte Celular , Células Cultivadas , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Humanos , Dados de Sequência Molecular , Interferência de RNA
12.
Nat Cell Biol ; 10(4): 381-3, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18379598

RESUMO

The anaphase-promoting complex (APC) mediates the ubiquitination and degradation of key M-phase regulators, including cyclins and the anaphase inhibitor securin. Intriguingly, securin can also inhibit the degradation of cyclin B. This competition between substrates permits the accumulation of enough cyclin to drive entry into M phase.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Animais , Proteínas de Ciclo Celular/genética , Camundongos , Proteínas Nucleares/genética , Proteínas/genética , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Securina , Complexos Ubiquitina-Proteína Ligase/antagonistas & inibidores
13.
Mol Cell Biol ; 28(15): 4653-64, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18519589

RESUMO

The ubiquitin ligase activity of the anaphase-promoting complex (APC)/cyclosome needs to be tightly regulated for proper cell cycle progression. Substrates are recruited to the APC by the Cdc20 and Cdh1 accessory proteins. The Cdh1-APC interaction is inhibited through phosphorylation of Cdh1 by Cdc28, the major cyclin-dependent protein kinase in budding yeast. More recently, Acm1 was reported to be a Cdh1-binding and -inhibitory protein in budding yeast. We found that although Acm1 is an unstable protein and contains the KEN-box and D-box motifs typically found in APC substrates, Acm1 itself is not an APC substrate. Rather, it uses these motifs to compete with substrates for Cdh1 binding, thereby inhibiting their recruitment to the APC. Mutation of these motifs prevented Acm1-Cdh1 binding in vivo and rendered Acm1 inactive both in vitro and in vivo. Acm1 stability was critically dependent on phosphorylation by Cdc28, as Acm1 was destabilized following inhibition of Cdc28, mutation of consensus Cdc28 phosphorylation sites in Acm1, or deletion of the Bmh1 and Bmh2 phosphoprotein-binding proteins. Thus, Cdc28 serves dual roles in inhibiting Cdh1-dependent APC activity during the cell cycle: stabilization of the Cdh1 inhibitor Acm1 and direct phosphorylation of Cdh1 to prevent its association with the APC.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Complexos Ubiquitina-Proteína Ligase/antagonistas & inibidores , Motivos de Aminoácidos , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Ciclo Celular , Mutação/genética , Fosforilação , Ligação Proteica , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Repressoras/química , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Relação Estrutura-Atividade , Especificidade por Substrato , Termodinâmica , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitinação
14.
Genes Dev ; 21(6): 655-67, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17369399

RESUMO

Inappropriate attachment/tension between chromosomal kinetochores and the kinetochore microtubules activates the spindle assembly checkpoint, which delays anaphase by blocking the ubiquitin-mediated degradation of securin/Pds1p by APCCdc20. The checkpoint proteins Mad2 and Mad3/BubR1 bind to Cdc20, although how they inhibit APCCdc20 is unclear. We investigated the roles of two evolutionarily conserved KEN boxes and a D box within Mad3/BubR1. Although such motifs usually mediate APC-substrate recognition and ubiquitination, they have no apparent role in Mad3p turnover in Saccharomyces cerevisiae. Instead, these motifs are important for Mad3p function in the checkpoint and for binding to Cdc20p. We show that the Mad3p D box and KEN boxes function together to mediate Cdc20p-Mad3p interaction and that Mad3p and an anaphase-promoting complex (APC) substrate, Hsl1p, compete for Cdc20p binding in a D-box- and KEN-box-dependent manner. In vivo, we observed an increased binding of Cdc20p to Mad3p and decreased binding to Hsl1p upon checkpoint activation. Furthermore, we demonstrate that Mad2p stimulates the association between Mad3p and Cdc20p and that this stimulated binding requires KEN box 1 within Mad3p. These findings implicate Mad3p as a pseudosubstrate inhibitor of APCCdc20, competing with APC substrates for Cdc20p binding. We present a model aimed at unifying previous analyses of checkpoint function by focusing on the Mad3-Cdc20 interaction.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Sítios de Ligação , Ligação Competitiva , Proteínas Cdc20 , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Sequência Conservada , Proteínas Mad2 , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Fuso Acromático/metabolismo
15.
Mol Cell ; 18(5): 533-42, 2005 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-15916960

RESUMO

The anaphase-promoting complex (APC) is a ubiquitin ligase that promotes the degradation of cell-cycle regulators. Cdh1p is an APC coactivator that directly binds APC substrates. A genetic screen in budding yeast identified residues within Cdh1p critical for its function. Cdh1p proteins containing mutations within the "C box" or the "IR" motif could bind substrate, but not the APC, whereas mutants that only bound the APC were not identified, suggesting an ordered assembly of the ternary APC-Cdh1p-substrate complex. Supporting this hypothesis, we found that substrate binding to wild-type Cdh1p enhanced its association with the APC in yeast cells. We used peptide competition assays to demonstrate that Cdh1p interacts directly with the D box and the KEN box, two motifs within APC substrates known to be required for APC-mediated degradation. Moreover, an intact D box domain within a substrate was required to stimulate the association between the Cdh1p-substrate complex and the APC.


Assuntos
Motivos de Aminoácidos , Mutação , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Proteínas Cdh1 , Análise Mutacional de DNA , Complexos Multiproteicos , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
16.
Cell Cycle ; 4(1): 155-65, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15611625

RESUMO

In addition to their activation via binding to cyclins, cyclin-dependent kinases (CDKs) can be activated via binding to a novel cell cycle regulator termed Speedy/Ringo, which shows no apparent similarity to cyclins. The first Speedy/Ringo protein was found to be essential for Xenopus oocyte maturation and a human homolog (Spy1, herein called Speedy/ Ringo A1) regulates S-phase entry and cell survival after DNA damage in cultured somatic cells. We have identified a Speedy/Ringo-like gene in the most primitive branching clade of chordates (Ciona intestinalis), as well as four mammalian homologs. Of the mammalian proteins, two, Speedy/Ringo A and C, bind to Cdc2 and Cdk2, whereas Speedy/Ringo B binds preferentially to Cdc2. Despite their distinct CDK-binding preferences, both Speedy/Ringo A and B can promote the maturation of Xenopus oocytes and all three Speedy/Ringo proteins can bind to and activate CDKs in vivo. These mammalian Speedy/Ringo proteins exhibit distinct tissue expression patterns, though all three are enriched in testis, consistent with the initial observation that Xenopus Speedy/Ringo functions during meiosis. Speedy/Ringo A is widely expressed in tissues and cell lines. Speedy/Ringo B expression appears to be testis-specific. Speedy/Ringo C is expressed in diverse tissues, particularly those that undergo polyploidization. All Speedy/Ringo proteins share a highly conserved approximately 140-aa domain we term the Speedy/Ringo box that is essential for CDK binding. Point mutations in this domain abolish CDK binding. Besides the central Speedy/Ringo box, Speedy/Ringo A contains a C-terminal portion, which promotes CDK activation, and an N-terminal portion, which is dispersible for both CDK binding and activation but that influences protein expression. The existence of this growing family of CDK activators suggests that Speedy/Ringo proteins may play as complex a role in cell cycle control as the diverse family of cyclins.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteína Quinase CDC2/fisiologia , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Clonagem Molecular , Quinase 2 Dependente de Ciclina/fisiologia , Ciclinas/fisiologia , Regulação da Expressão Gênica , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
17.
Eukaryot Cell ; 2(2): 274-83, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12684377

RESUMO

CTDK-I phosphorylates the C-terminal domain (CTD) of the large subunit of yeast RNA polymerase II in a reaction that stimulates transcription elongation. Mutations in CTDK-I subunits-Ctk1p, Ctk2p, and Ctk3p-confer conditional phenotypes. In this study, we examined the role of CTDK-I in the DNA damage response. We found that mutation of individual CTDK-I subunits rendered yeast sensitive to hydroxyurea (HU) and UV irradiation. Treatment with DNA-damaging agents increased phosphorylation of Ser2 within the CTD repeats in wild-type but not in ctk1Delta mutant cells. Using microarray hybridization, we identified genes whose transcription following DNA damage is Ctk1p dependent, including several DNA repair and stress response genes. Following HU treatment, the level of Ser2-phosphorylated RNA polymerase II increased both globally and on the CTDK-I-regulated genes. The pleiotropic phenotypes of ctk mutants suggest that CTDK-I activity is essential during large-scale transcriptional repatterning under stress and unfavorable growth conditions.


Assuntos
Dano ao DNA/genética , Proteínas Quinases/deficiência , Proteínas Quinases/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transcrição Gênica/genética , Células Cultivadas , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Hidroxiureia/farmacologia , Mutação/genética , Fenótipo , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , RNA Polimerase II/genética , Serina/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/efeitos da radiação , Raios Ultravioleta , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Regulação para Cima/efeitos da radiação
18.
J Biol Chem ; 277(36): 33482-9, 2002 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-12084729

RESUMO

Cyclin-dependent kinases (cdks) coordinate progression through the eukaryotic cell cycle and require phosphorylation by a cdk-activating kinase (CAK) for full activity. In most eukaryotes Cdk7 is the catalytic subunit of a heterotrimeric CAK (Cdk7-cyclin H-Mat1) that is also involved in transcription as part of the transcription factor IIH complex. The Saccharomyces cerevisiae CAK, Cak1p, is a monomeric protein kinase with an atypical sequence and unusual biochemical properties compared with trimeric CAKs and other protein kinases. We sought to determine whether these properties were shared by a small group of monomeric CAKs that can function in place of CAK1 in S. cerevisiae. We found that Schizosaccharomyces pombe Csk1, Candida albicans Cak1, and Arabidopsis thaliana Cak1At, like Cak1p, all displayed a preference for cyclin-free cdk substrates, were insensitive to the protein kinase inhibitor 5'-fluorosulfonylbenzoyladenosine (FSBA), and were insensitive to mutation of a highly conserved lysine residue found in the nucleotide binding pocket of all protein kinases. The S. pombe and C. albicans kinases also resembled Cak1p in their kinetics of nucleotide and protein substrate utilization. Conservation of these unusual properties in fungi and plants points to shared evolutionary requirements not met by Cdk7 and raises the possibility of developing antifungal agents targeting CAKs.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Proteínas Serina-Treonina Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Alanina/química , Sequência de Aminoácidos , Animais , Antifúngicos/farmacologia , Arabidopsis/metabolismo , Candida albicans/metabolismo , Linhagem Celular , Quinase 2 Dependente de Ciclina , Quinases Ciclina-Dependentes/genética , Relação Dose-Resposta a Droga , Glutationa Transferase/metabolismo , Humanos , Insetos , Cinética , Lisina/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Plasmídeos/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Xenopus , Xenopus laevis , Quinase Ativadora de Quinase Dependente de Ciclina
19.
Nat Struct Biol ; 9(4): 263-7, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11887184

RESUMO

Members of the ATP-dependent family of chromatin remodeling enzymes play key roles in the regulation of transcription, development, DNA repair and cell cycle control. We find that the remodeling activities of the ySWI/SNF, hSWI/SNF, xMi-2 and xACF complexes are nearly abolished by incorporation of linker histones into nucleosomal array substrates. Much of this inhibition is independent of linker histone-induced folding of the arrays. We also find that phosphorylation of the linker histone by Cdc2/Cyclin B kinase can rescue remodeling by ySWI/SNF. These results suggest that linker histones exert a global, genome-wide control over remodeling activities, implicating a new, obligatory coupling between linker histone kinases and ATP-dependent remodeling enzymes.


Assuntos
Trifosfato de Adenosina/metabolismo , Cromatina/química , Cromatina/enzimologia , Citidina Desaminase , DNA Helicases , Histonas/metabolismo , Conformação de Ácido Nucleico , Desaminase APOBEC-1 , Adenosina Trifosfatases/metabolismo , Animais , Autoantígenos/metabolismo , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Regulação da Expressão Gênica , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Fosforilação , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Xenopus laevis , Leveduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA