Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 41(10): e109782, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35437807

RESUMO

The innate immune receptor RIG-I provides a first line of defense against viral infections. Viral RNAs are recognized by RIG-I's C-terminal domain (CTD), but the RNA must engage the helicase domain to release the signaling CARD (Caspase Activation and Recruitment Domain) domains from their autoinhibitory CARD2:Hel2i interactions. Because the helicase itself lacks RNA specificity, mechanisms to proofread RNAs entering the helicase domain must exist. Although such mechanisms would be crucial in preventing aberrant immune responses by non-specific RNAs, they remain largely uncharacterized to date. This study reveals a previously unknown proofreading mechanism through which RIG-I ensures that the helicase engages RNAs explicitly recognized by the CTD. A crucial part of this mechanism involves the intrinsically disordered CARDs-Helicase Linker (CHL), which connects the CARDs to the helicase subdomain Hel1. CHL uses its negatively charged regions to antagonize incoming RNAs electrostatically. In addition to this RNA gating function, CHL is essential for stabilization of the CARD2:Hel2i interface. Overall, we uncover that the CHL and CARD2:Hel2i interface work together to establish a tunable gating mechanism that allows CTD-chosen RNAs to bind the helicase domain, while at the same time blocking non-specific RNAs. These findings also indicate that CHL could represent a novel target for RIG-I-based therapeutics.


Assuntos
RNA Helicases DEAD-box , RNA de Cadeia Dupla , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Helicases/metabolismo , Imunidade Inata , Estrutura Terciária de Proteína , RNA Viral/genética
2.
Nucleic Acids Res ; 51(15): 8102-8114, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37326006

RESUMO

The innate immune receptor RIG-I recognizes 5'-triphosphate double-stranded RNAs (5' PPP dsRNA) as pathogenic RNAs. Such RNA-ends are present in viral genomes and replication intermediates, and they activate the RIG-I signaling pathway to produce a potent interferon response essential for viral clearance. Endogenous mRNAs cap the 5' PPP-end with m7G and methylate the 2'-O-ribose to evade RIG-I, preventing aberrant immune responses deleterious to the cell. Recent studies have identified RNAs in cells capped with metabolites such as NAD+, FAD and dephosphoCoA. Whether RIG-I recognizes these metabolite-capped RNAs has not been investigated. Here, we describe a strategy to make metabolite-capped RNAs free from 5' PPP dsRNA contamination, using in vitro transcription initiated with metabolites. Mechanistic studies show that metabolite-capped RNAs have a high affinity for RIG-I, stimulating the ATPase activity at comparable levels to 5' PPP dsRNA. Cellular signaling assays show that the metabolite-capped RNAs potently stimulate the innate antiviral immune response. This demonstrates that RIG-I can tolerate diphosphate-linked, capped RNAs with bulky groups at the 5' RNA end. This novel class of RNAs that stimulate RIG-I signaling may have cellular roles in activating the interferon response and may be exploited with proper functionalities for RIG-I-related RNA therapeutics.


Assuntos
RNA Helicases DEAD-box , RNA de Cadeia Dupla , Proteína DEAD-box 58/genética , RNA Helicases DEAD-box/metabolismo , Imunidade Inata , Interferons/genética , Ligantes , Capuzes de RNA , RNA Viral/genética , RNA Viral/metabolismo , Transdução de Sinais , Humanos
3.
Biochem Soc Trans ; 52(3): 1131-1148, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38884803

RESUMO

The RIG-I-like receptors (RLRs), comprising retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2), are pattern recognition receptors belonging to the DExD/H-box RNA helicase family of proteins. RLRs detect viral RNAs in the cytoplasm and respond by initiating a robust antiviral response that up-regulates interferon and cytokine production. RIG-I and MDA5 complement each other by recognizing different RNA features, and LGP2 regulates their activation. RIG-I's multilayered RNA recognition and proofreading mechanisms ensure accurate viral RNA detection while averting harmful responses to host RNAs. RIG-I's C-terminal domain targets 5'-triphosphate double-stranded RNA (dsRNA) blunt ends, while an intrinsic gating mechanism prevents the helicase domains from non-specifically engaging with host RNAs. The ATPase and RNA translocation activity of RIG-I adds another layer of selectivity by minimizing the lifetime of RIG-I on non-specific RNAs, preventing off-target activation. The versatility of RIG-I's ATPase function also amplifies downstream signaling by enhancing the signaling domain (CARDs) exposure on 5'-triphosphate dsRNA and promoting oligomerization. In this review, we offer an in-depth understanding of the mechanisms RIG-I uses to facilitate viral RNA sensing and regulate downstream activation of the immune system.


Assuntos
Proteína DEAD-box 58 , Imunidade Inata , RNA Viral , Receptores Imunológicos , Humanos , RNA Viral/metabolismo , Proteína DEAD-box 58/metabolismo , Receptores Imunológicos/metabolismo , Animais , RNA de Cadeia Dupla/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA Helicases/metabolismo
4.
J Biol Chem ; 292(44): 18145-18160, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28882896

RESUMO

Single-subunit RNA polymerases (RNAPs) are present in phage T7 and in mitochondria of all eukaryotes. This RNAP class plays important roles in biotechnology and cellular energy production, but we know little about its fidelity and error rates. Herein, we report the error rates of three single-subunit RNAPs measured from the catalytic efficiencies of correct and all possible incorrect nucleotides. The average error rates of T7 RNAP (2 × 10-6), yeast mitochondrial Rpo41 (6 × 10-6), and human mitochondrial POLRMT (RNA polymerase mitochondrial) (2 × 10-5) indicate high accuracy/fidelity of RNA synthesis resembling those of replicative DNA polymerases. All three RNAPs exhibit a distinctly high propensity for GTP misincorporation opposite dT, predicting frequent A→G errors in RNA with rates of ∼10-4 The A→C, G→A, A→U, C→U, G→U, U→C, and U→G errors mostly due to pyrimidine-purine mismatches were relatively frequent (10-5-10-6), whereas C→G, U→A, G→C, and C→A errors from purine-purine and pyrimidine-pyrimidine mismatches were rare (10-7-10-10). POLRMT also shows a high C→A error rate on 8-oxo-dG templates (∼10-4). Strikingly, POLRMT shows a high mutagenic bypass rate, which is exacerbated by TEFM (transcription elongation factor mitochondrial). The lifetime of POLRMT on terminally mismatched elongation substrate is increased in the presence of TEFM, which allows POLRMT to efficiently bypass the error and continue with transcription. This investigation of nucleotide selectivity on normal and oxidatively damaged DNA by three single-subunit RNAPs provides the basic information to understand the error rates in mitochondria and, in the case of T7 RNAP, to assess the quality of in vitro transcribed RNAs.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/metabolismo , Elongação da Transcrição Genética , Proteínas Virais/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Bacteriófago T7/enzimologia , Pareamento Incorreto de Bases , Dano ao DNA , RNA Polimerases Dirigidas por DNA/genética , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Polarização de Fluorescência , Humanos , Proteínas Mitocondriais/genética , Taxa de Mutação , Oxirredução , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Fatores de Transcrição/metabolismo , Proteínas Virais/genética
5.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38328244

RESUMO

Influenza A and B viruses overcome the host antiviral response to cause a contagious and often severe human respiratory disease. Here, integrative structural biology and biochemistry studies on non-structural protein 1 of influenza B virus (NS1B) reveal a previously unrecognized viral mechanism for innate immune evasion. Conserved basic groups of its C-terminal domain (NS1B-CTD) bind 5'triphosphorylated double-stranded RNA (5'-ppp-dsRNA), the primary pathogen-associated feature that activates the host retinoic acid-inducible gene I protein (RIG-I) to initiate interferon synthesis and the cellular antiviral response. Like RIG-I, NS1B-CTD preferentially binds blunt-end 5'ppp-dsRNA. NS1B-CTD also competes with RIG-I for binding 5'ppp-dsRNA, and thus suppresses activation of RIG-I's ATPase activity. Although the NS1B N-terminal domain also binds dsRNA, it utilizes a different binding mode and lacks 5'ppp-dsRNA end preferences. In cells infected with wild-type influenza B virus, RIG-I activation is inhibited. In contrast, RIG-I activation and the resulting phosphorylation of transcription factor IRF-3 are not inhibited in cells infected with a mutant virus encoding NS1B with a R208A substitution it its CTD that eliminates its 5'ppp-dsRNA binding activity. These results reveal a novel mechanism in which NS1B binds 5'ppp-dsRNA to inhibit the RIG-I antiviral response during influenza B virus infection, and open the door to new avenues for antiviral drug discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA