Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
BMC Cancer ; 24(1): 19, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167030

RESUMO

BACKGROUND: GBM is the most frequent malignant primary brain tumor in humans. The CLEC19A is a member of the C-type lectin family, which has a high expression in brain tissue. Herein, we sought to carry out an in-depth analysis to pinpoint the role of CLEC19A expression in GBM. METHODS: To determine the localization of CLEC19A, this protein was detected using Western blot, Immunocytochemistry/Immunofluorescence, and confocal microscopy imaging. CLEC19A expression in glioma cells and tissues was evaluated by qRT-PCR. Cell viability, proliferation, migration, and apoptosis were examined through MTT assay, CFSE assay, colony formation, wound healing assay, transwell test, and flow cytometry respectively after CLEC19A overexpression. The effect of CLEC19A overexpression on the PI3K/AKT/NF-κB signaling pathway was investigated using Western blot. An in vivo experiment substantiated the in vitro results using the glioblastoma rat models. RESULTS: Our in-silico analysis using TCGA data and measuring CLEC19A expression level by qRT-PCR determined significantly lower expression of CLEC19A in human glioma tissues compared to healthy brain tissues. By employment of ICC/IF, confocal microscopy imaging, and Western blot we could show that CLEC19A is plausibly a secreted protein. Results obtained from several in vitro readouts showed that CLEC19A overexpression in U87 and C6 glioma cell lines is associated with the inhibition of cell proliferation, viability, and migration. Further, qRT-PCR and Western blot analysis showed CLEC19A overexpression could reduce the expression levels of PI3K, VEGFα, MMP2, and NF-κB and increase PTEN, TIMP3, RECK, and PDCD4 expression levels in glioma cell lines. Furthermore, flow cytometry results revealed that CLEC19A overexpression was associated with significant cell cycle arrest and promotion of apoptosis in glioma cell lines. Interestingly, using a glioma rat model we could substantiate that CLEC19A overexpression suppresses glioma tumor growth. CONCLUSIONS: To our knowledge, this is the first report providing in-silico, molecular, cellular, and in vivo evidences on the role of CLEC19A as a putative tumor suppressor gene in GBM. These results enhance our understanding of the role of CLEC19A in glioma and warrant further exploration of CLEC19A as a potential therapeutic target for GBM.


Assuntos
Glioblastoma , Glioma , Lectinas Tipo C , Animais , Humanos , Ratos , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioma/metabolismo , Glioma/patologia , Proteínas Ligadas por GPI/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo
2.
Mol Biol Rep ; 51(1): 728, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861185

RESUMO

INTRODUCTION: Colorectal cancer (CRC) is the second common cancer and the fourth major reason of cancer death worldwide. Dysregulation of intracellular pathways, such as TGF-ß/SMAD signaling, contributes to CRC development. MicroRNAs (miRNAs) are post-transcriptional regulators that are involved in CRC pathogenesis. Here, we aimed to investigate the effect of miR-3613-3p on the TGF-ß /SMAD signaling pathway in CRC. METHODS & RESULTS: Bioinformatics analysis suggested that miR-3613-3p is a regulator of TGF-Β signaling downstream genes. Then, miR-3613-3p overexpression was followed by downregulation of TGF-ßR1, TGF-ßR2, and SMAD2 expression levels, detected by RT-qPCR. Additionally, dual luciferase assay supported the direct interaction of miR-3613-3p with 3'UTR sequences of TGF-ßR1 and TGF-ßR2 genes. Furthermore, reduced SMAD3 protein level following the miR-3613-3p overexpression verified its suppressive effect against TGF-ß signaling in HCT-116 cells, detected by western blot analysis. Finally, miR-3613-3p overexpression induced sub-G1 arrest in HCT116 cells, detected by flow cytometry, and promoted downregulation of cyclin D1 protein expression, which was detected by western blotting analysis. CONCLUSION: Our findings indicated that miR-3613-3p plays an important role in CRC by targeting the TGF-ß/SMAD signaling pathway and could be considered as a new candidate for further therapy investigations.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Proteína Smad2/metabolismo , Proteína Smad2/genética , Proliferação de Células/genética , Regiões 3' não Traduzidas/genética , Linhagem Celular Tumoral , Proteína Smad3/genética , Proteína Smad3/metabolismo
3.
J Ethn Subst Abuse ; : 1-17, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900673

RESUMO

Multiple sclerosis (MS) is a condition characterized by inflammation in the central nervous system (CNS), impacting sensory, motor, and cognitive abilities. Globally, around three million individuals are affected by MS, with up to 97,000 cases in Iran attributed to genetic predispositions along with various environmental factors like smoking. Cognitive impairment affects a significant portion of patients, ranging from 45% to 70%. This study investigates the impact of regular aerobic swimming exercise for four weeks, mild cognitive impairment induced by encephalomyelitis, and their combination on the expression of microRNA-142-3p and its correlation with the release of brain-derived neurotrophic factor (BDNF) in relation to spatial memory. Twenty-one C57BL/6 mice were divided into three groups. RT-PCR was used for microRNA expression analysis, and BDNF levels were assessed via western blotting. Clinical scores and animal weights were monitored daily. EAE induction led to an increase in microRNA-142-3p expression and a decrease in BDNF levels compared to the control group. Exercise inversed them significantly, and improved spatial memory. Our findings indicate that engaging in regular swimming exercise can counteract the up-regulation of miR-142-3p in brain tissue, which likely contributes to mild cognitive impairment induced by MS. Additionally, the increase in BDNF following exercise appears to be associated with miR-142-3p and the enhancement of cognitive function. Thus, the therapeutic benefits of exercise, particularly in releasing BDNF to improve cognitive function in MS patients, warrant consideration. Lifestyle modifications have the potential to effectively modulate environmental influences and ethnicity, underscoring their significance in MS management.

4.
Funct Integr Genomics ; 23(1): 40, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36648607

RESUMO

Identification of the genes and genetic networks involved in breast cancer development is a major need for prevention and therapy. LINC02381 (lncRNA) has already been introduced as a tumor suppressor in colorectal and gastric cancers. Here, we intended to investigate its potential functional effects on breast cancer. In the analysis performed on RNA-Seq and microarray data, the LINC02381 lncRNA was found to be significantly downregulated in the breast tumors and associated with poor survival of the patients. Then, the differential expression of LINC02381 was confirmed in breast tumor tissues and cancer cell lines using RT-qPCR. Overexpression of LINC02381 resulted in reduced IGF1R and p-AKT expression levels which indicates decreased PI3K pathway activity, detected by RT-qPCR and western blotting. At the cellular level, LINC02381 overexpression was followed by a decreased proliferation rate of transfected breast cell lines, detected by PI flow cytometry, RT-qPCR, colony formation, and MTT assays. Consistently, the results of Annexin-V/PI flow cytometry, RT-qPCR, caspase3/7 activity, and AO/EB-H33342/PI dual staining revealed that LINC02381 overexpression induced apoptosis and cell death. The reduced migration rate of these cells was also verified through wound healing assay and RT-qPCR against the EMT-involved genes. Our data show that LINC02381 exerts its tumor suppressor effect at least partly through attenuation of the IGF1R/PI3K/AKT signaling pathway, which originated from IGF1R downregulation.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Mama/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Proliferação de Células/genética , Apoptose/genética , Linhagem Celular Tumoral , Receptor IGF Tipo 1/genética
5.
Biol Chem ; 404(1): 71-83, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36420528

RESUMO

Long noncoding RNAs are cancer regulators and EVADR-lncRNA is highly upregulated in colorectal cancer (CRC). Accordingly, we aimed to functionally characterize the EVADR in CRC-originated cells. Firstly, during the amplification of EVADR full-length cDNA (named EVADR-v1), a novel/shorter variant (EVADR-v2) was discovered. Then, RT-qPCR analysis confirmed that EVADR is upregulated in tumors, consistent with RNA-seq analysis. Interestingly, bioinformatics analysis and dual-luciferase assay verified that EVADR sponges miR-7 and miR-29b. When both EVADR-v1/-v2 variants were overexpressed in SW480/HCT116 cells, miR-7 and miR-29b target genes (involved in the WNT/PI3K signaling) were upregulated. Furthermore, EVADR-v1/-v2 overexpression resulted in elevated PI3K activity (verified by western blotting and RT-qPCR) and upregulation of WNT signaling (confirmed by western blotting, TopFlash assay, and RT-qPCR). Consistently, overexpression of EVADR-v1/-v2 variants was followed by increased cell cycle progression, viability and migration as well as reduced early/late apoptotic rate, and Bax/Bcl2 ratio of the CRC cells, detected by the cell cycle analysis, MTT, wound-healing, Annexin-V/PI, and RT-qPCR methods, respectively. Overall, we introduced two oncogenic transcript variants for EVADR that by sponging miR-7/miR-29b, upregulate WNT and PI3K signaling. Given the crucial role of these pathways in CRC, EVADR may present potential therapy use.


Assuntos
MicroRNAs , RNA Longo não Codificante , Via de Sinalização Wnt , Humanos , Células HCT116 , MicroRNAs/genética , Fosfatidilinositol 3-Quinases , RNA Longo não Codificante/genética
6.
Microb Pathog ; 184: 106376, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37777141

RESUMO

Human Immunodeficiency Virus type-1 (HIV-1) causes persistent and life-threatening infection, leading to progressive disease. MicroRNAs (miRNAs) are regulators of gene expression which can be found in circulating human blood samples. hsa-miR-29a-3p has been identified as a potential regulator of the Negative Regulatory Factor (Nef) gene from the HIV-1 viral genome. In this study, we aimed to compare the serum levels of hsa-miR-29a-3p with HIV-1 viral load in a substantial number of infected individuals. We collected serum samples from a total of 48 participants, including 36 untreated HIV-positive patients, and 12 HIV-negative individuals as a control group, matched for age and sex. The HIV-1 viral load in both the case and control groups was confirmed using qRT-PCR. Subsequent qRT-PCR analysis of circulating hsa-miR-29a-3p levels revealed lower miRNA expression in the groups with higher viral loads. A negative correlation (r = -0.58) was calculated between hsa-miR-29a-3p levels and HIV-1 viral load. These findings suggest that the expression level of hsa-miR-29a-3p may serve as an indicator of HIV-1 viral load in human serum samples. Additionally, this miR may hold promise as a potential tool for enhancing HIV-1 treatment strategies.


Assuntos
HIV-1 , MicroRNAs , Humanos , HIV-1/genética , HIV-1/metabolismo , Carga Viral , MicroRNAs/metabolismo , Reação em Cadeia da Polimerase
7.
Cell Mol Neurobiol ; 43(5): 2309-2322, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36449154

RESUMO

Glioma is a malignancy of the central nervous system with a poor prognosis. Therefore, the elaboration of its molecular features creates therapeutic opportunities. Looking for the regulatory non-coding RNAs (lncRNAs and miRNAs) that are involved in glioma incidence/progression, RNA-seq analysis introduced upregulated ADAMTS9-AS1 as a bona fide candidate that sponges miR-128 and miR-150 and shows the negative correlation of expression with them. Then, RT-qPCR verified the upregulation of ADAMTS9-AS1 in glioma tissues and cell lines. Furthermore, dual-luciferase assay supported that cytoplasmic ADAMTS9-AS1 is capable of sponging miR-128 and miR-150, which are known as regulators of Ras/MAPK, PI3K, and Wnt pathways. Following the overexpression of ADAMTS9-AS1 in 1321N1 and U87 glioma cells, tyrosine kinase receptors (IGF1R and TrkC), as well as Wnt receptors (Lrp6 and Fzd) were upregulated, detected by RT-qPCR. Furthermore, downstream genes of both Ras/MAPK and Wnt pathways were upregulated. Finally following the ADAMTS9-AS1 overexpression, upregulation of Ras/MAPK and Wnt signaling pathways was verified through western blotting and Top/Fop flash assay, respectively. At the cellular level, ADAMTS9-AS1 overexpression brought about reduced sub-G1 cell population, increased proliferation rate, reduced apoptosis level, increased migration rate, shortened Bax/Bcl2 ratio, induced EMT, and stemness characteristics of transfected cells, detected by flow cytometry, MTT assay, scratch test, and RT-qPCR. Overall, these results introduced ADAMTS9-AS1 as an oncogene that upregulates Ras/MAPK and Wnt pathways through sponging of the miR-128 and miR-150 in glioma cells. The outcome of ADAMTS9-AS1 expression is more aggression of the glioma cells through increased EMT and stemness characteristics. These features candidate ADAMTS9-AS1 locus for glioma therapy. As a result, we discovered the oncogenic properties of ADAMTS9-AS1 in glioma cancer. It sponges miR-128 and miR-150 and subsequently overstimulates RAS/MAPK and Wnt signaling pathways, particularly at the receptors level. Thus, ADAMTS9-AS1 increases proliferation, migration, and stemness in glioma cell lines. A schematic representation showing the functional effect of ADAMTS9-AS1.


Assuntos
Glioma , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Glioma/patologia , Via de Sinalização Wnt/genética , Linhagem Celular Tumoral , Receptores Proteína Tirosina Quinases/metabolismo , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteína ADAMTS9/genética , Proteína ADAMTS9/metabolismo
8.
J Cell Biochem ; 123(4): 746-758, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35060166

RESUMO

HER2 signaling upregulation is a hallmark of breast cancer which is the second cause of cancer-related death in women. Here, we were looking for the candidate microRNAs which is capable of regulating the HER2 receptor and the genes of its downstream. To this aim, preliminary bioinformatics analysis introduced hsa-miR-1254 (miR-1254) as a potential common regulator of HER2, HER3, PIK3R2, and AKT1 genes. Then, reverse-transcription quantitative polymerase chain reaction (RT-qPCR) analysis indicated a lower expression level of miR-1254 in breast cancer specimens, compared to their normal pairs. Furthermore, overexpression of miR-1254 resulted in HER2, HER3, PIK3R2, and AKT1 genes downregulation, detected by RT-qPCR and confirmed by western blot analysis and enzyme-linked immunosorbent assay test against AKT1, BAX, FADD, and HER2 protein levels in SKBR3 cells. Dual-luciferase assay also supported direct interaction of miR-1254 with MREs within 3' untranslated region sequences of HER2, HER3, PIK3R2, and AKT1 target genes. Overexpression of miR-1254 in SKBR3 cells was followed by increased BAX/BCL2 expression ratio, detected by RT-qPCR, and increased proportion of G1 cell population, detected by flow cytometry. Corroborated by cell cycle analysis, MTT, Annexin V-FITC, and Live-Dead cell staining assays, overexpression of miR-1254 in MDA-MB-231 cells showed opposing results following the overexpression of miR-1254. Taken together, results indicated that miR-1254 acts as cell-type-specific tumor suppressor that targets HER2, HER3, PIK3R2, and AKT1 transcripts. These results suggest miR-1254 as a potential therapeutic candidate for breast cancer subtypes.


Assuntos
Neoplasias da Mama , MicroRNAs , Regiões 3' não Traduzidas , Neoplasias da Mama/metabolismo , Feminino , Humanos , MicroRNAs/genética , Receptor ErbB-2 , Transdução de Sinais/genética , Proteína X Associada a bcl-2/genética
9.
Tumour Biol ; 44(1): 215-230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36442170

RESUMO

BACKGROUND: ErbB/PI3K signaling is widely recognized as a critical modulator of malignancy and miRNAs have been found to play a crucial role in the regulation of this pathway. OBJECTIVE: This study aimed to identify novel miRNAs related to the ErbBs loci and investigate the functional effects of these miRNAs on ErbB/PI3K signaling in cancer progression. MATERIALS AND METHODS: Bioinformatics tools and RNA-seq data were used to discover novel miRNAs in breast and colon cancer cells. Gene expression levels were determined using RT-qPCR. Western blotting and dual-luciferase assays were used to identify the regulatory mechanism between ErbB4-miR1/2 and related genes. The effects of ErbB4-miR1/2 on cell proliferation, viability, ROS production, and migration were assessed by PI-flow cytometry, colony formation, MTT, ROS, scratch, and transwell assays in SKBR3 and SW480 cells. RESULTS: MicroRNA prediction tools, RNA-seq data, RT-qPCR, and sequencing results identified ErbB4-miR1 and ErbB4-miR2 (ErbB4-miR1/2) as novel miRNAs encoded by ErbB4 gene. ErbB4-miR1/2 were downregulated in breast and colon tumor tissues and also in different cancerous cells. RT-qPCR and dual-luciferase assays revealed that ErbB2 and ErbB3 genes are regulated by ErbB4-miR1/2. Consistently, a decrease in the p-AKT/AKT protein ratio verified the suppressive effect of ErbB4-miR1/2 on ErbB/PI3K activity. Furthermore, ErbB4-miR1/2 overexpression suppressed cell proliferation, viability, and migration, and increased ROS production. CONCLUSIONS: ErbB4-miR1/2 are novel tumor suppressor miRNAs which attenuate ErbB/PI3K signaling in breast and colon cancer cells.


Assuntos
Neoplasias do Colo , MicroRNAs , Humanos , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Receptor ErbB-4/genética , Neoplasias do Colo/genética
10.
J Neurooncol ; 158(1): 1-13, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35460500

RESUMO

PURPOSE: LncRNAs play essential roles in the cellular and molecular biology of glioma. Some LncRNAs exert their role through sponging miRNAs and regulating multiple signaling pathways. LINC02381 is involved in several cancer types as either oncogene or tumor suppressor. Here, we intended to find the molecular mechanisms of the LINC02381 effect during the glioma progression in related cell lines. METHODS AND RESULTS: RNA-seq data analysis indicated the oncogenic characteristics of LINC02381, and RT-qPCR results confirmed its upregulation compared to normal tissues. Besides its expression was relatively stronger in invasive glioma cell lines. Furthermore, in silico analysis revealed LINC02381 is concentrated in the cytoplasm and predicted its sponging effect against miR-128 and miR-150, which was verified through dual luciferase assay. When LINC02381 was overexpressed in 1321N1, U87, and A172 cell lines, IGF1R and TrkC receptors as well as their downstream pathways (PI3K and RAS/MAPK), were upregulated, detected by RT-qPCR, and verified by western analysis. Consistently, LINC02381 overexpression was followed by an increased proliferation rate of transfected glioma cell lines, detected by flow cytometry and MTT assay, and RT-qPCR. It also resulted in elevated EMT and stemness markers expression level, increased migration rate, and reduced apoptosis rate, detected by RT-qPCR, western analysis, scratch test, and Annexin/PI flow cytometry analysis, respectively. CONCLUSION: The overall results indicated that LINC02381 exerts its oncogenic effect in glioma cells through sponging miR-128 and miR-150 to upregulate the IGF1R signaling pathway. Our results introduce LINC02381 and miR-128, and miR-150 as potential prognosis and therapy targets for the treatment of glioma.


Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , RNA Longo não Codificante , Receptor IGF Tipo 1 , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Oncogenes , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais
11.
Mol Biol Rep ; 49(5): 3377-3387, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35397713

RESUMO

BACKGROUND: Aberrant activation of the Wnt signaling pathway is observed in most colorectal cancers (CRC). OCC-1D is a splice variant of OCC-1 gene which is considered as a long noncoding RNA (lncRNA) due to lacking the translational initiation codon of the gene. Here, we sought supporting evidence for the effects of OCC-1D on the Wnt pathway and cell cycle progression in CRC. METHODS AND RESULTS: TOP/FOPflash assay and qRT-PCR indicated that expression alterations of OCC-1D could change Wnt signaling activity in colon cancer cells. Consistently, immunocytochemistry results showed the effect of OCC-1D overexpression on nuclear localization of ß-catenin proteins in SW480 cells. Flow cytometry, wound healing and MTT assay confirmed the cell cycle stimulatory effects of OCC-1D in CRC-originated cell lines (SW480 and HCT116). qRT-PCR revealed a positive correlation between the expression level of OCC-1D and its neighboring gene, APPL2. Two distinct tests, downregulation of APPL2 mRNA by using shRNA and Wnt signaling inhibition by using small molecule, along with OCC-1D overexpression confirmed that OCC-1D lncRNA exerts its effect on Wnt signaling pathway through expression modulation of APPL2 gene. CONCLUSIONS: Collectively, we suggested the putative regulatory effects of OCC-1D lncRNA on cell cycle progression and Wnt signaling activation through enhancing the APPL2 gene transcription.


Assuntos
Neoplasias Colorretais , Proteínas de Neoplasias/metabolismo , RNA Longo não Codificante , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , RNA Longo não Codificante/genética , Via de Sinalização Wnt , beta Catenina/metabolismo
12.
J Cell Mol Med ; 25(7): 3381-3390, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33675128

RESUMO

TrkC and NGFR neurotrophin receptors are associated with cell death, cancer and differentiation. TrkC-miR2, which is located in TrkC gene, is known to regulate Wnt signalling pathway, and its influence on other signalling pathways is under investigation. Here, through RT-qPCR, dual-luciferase assay and Western blotting we reveal that TrkC-miR2 targets NGFR. Overexpression of TrkC-miR2 also affected TrkA, TrkC, NFKB, BCL2 and Akt2 expressions involved in neurotrophin signalling pathway, and elevated survival rate of HEK293t and U87 cells was distinguished by flow cytometry and MTT assay. Consistently, an opposite expression correlation was obtained between TrkC-miR2 and NGFR or TrkC for the duration of NT2 differentiation. Meanwhile, TrkC-miR2 down-regulation attenuated NT2 differentiation into neural-like cells. Overall, here we present in silico and experimental evidence showing TrkC-miR2 as a new controller in regulation of neurotrophin signalling pathway.


Assuntos
MicroRNAs/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/genética , Receptor trkC/genética , Receptores de Fator de Crescimento Neural/genética , Transdução de Sinais , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , MicroRNAs/genética , Proteínas do Tecido Nervoso/metabolismo , Receptor trkC/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo
13.
Hum Mol Genet ; 28(19): 3219-3231, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31238337

RESUMO

YWHAE gene product belongs to the 14-3-3 protein family that mediates signal transduction in plants and mammals. Protein-coding and non-coding RNA (lncRNA) transcripts have been reported for this gene in human. Here, we aimed to functionally characterize YWHAE-encoded lncRNA in colorectal cancer-originated cells. RNA-seq analysis showed that YWHAE gene is upregulated in colorectal cancer specimens. Additionally, bioinformatics analysis suggested that YWHAE lncRNA sponges miR-323a-3p and miR-532-5p that were predicted to target K-Ras 3'UTR sequence. Overexpression of YWHAE lncRNA resulted in upregulation of K-Ras gene expression, while overexpression of both miR-323a-3p and miR-532-5p had an inverse effect, detected by RT-qPCR. Consistently, western blot analysis confirmed that YWHAE lncRNA overexpression upregulated K-Ras/Erk1/2 and PI3K/Akt signaling pathways, while miR-323a-3p and miR-532-5p overexpression suppressed both pathways in HCT116 cells. Furthermore, dual luciferase assay validated the direct interaction of miR-323a-3p and miR-532-5p with K-Ras 3'UTR sequence and supported the sponging effect of YWHAE lncRNA over both miRNAs. These results suggested YWHAE lncRNA as an oncogene that exerts its effect through sponging miR-323a-3p and miR-532-5p and in turn, upregulates K-Ras/Erk1/2 and PI3K/Akt signaling pathways. Consistently, flow cytometry analysis, MTT assay and measuring cyclin D1 gene expression, confirmed the cell cycle stimulatory effect of YWHAE lncRNA, while miR-323a-3p and miR-532-5p showed an inhibitory effect on cell cycle progression. Finally, wound-healing assay supported the cell migratory effect of YWHAE lncRNA in HCT116 cells. This study identified a novel mechanism involving YWHAE-encoded lncRNA, miR-323a-3p and miR-532-5p in regulating HCT116 cell survival and suggested a potential therapeutic avenue for colorectal cancer.


Assuntos
Proteínas 14-3-3/genética , Neoplasias do Colo/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Movimento Celular , Sobrevivência Celular , Ciclina D1/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Sistema de Sinalização das MAP Quinases , Análise de Sequência de RNA , Regulação para Cima
14.
Breast Cancer Res Treat ; 185(1): 95-106, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32974790

RESUMO

PURPOSE: Dysregulation of HER2 signaling pathway in breast cancer is well documented. Our bioinformatics analysis predicted hsa-miR-512-3p (miR-512-3p) as a bona fide regulator of HER2 as well as HER3, PIK3R2, and AKT1 genes. Then, we intended to examine the effect of miR-512-3p on the predicted target genes that are involved in HER2 signaling pathway. METHODS AND RESULTS: RT-qPCR results indicated lower expression of miR-512-3p in breast cancer specimens, compared to their normal pairs. Overexpression of miR-512-3p resulted in HER2, HER3, PIK3R2, and AKT1 gene downregulation, detected by RT-qPCR and the result was confirmed by western analysis and ELIZA test against p-AKT, BAX, FADD, and HER2 proteins in SKBR3 cells, respectively. Then, dual-luciferase assay supported the direct interaction of miR-512-3p with 3'UTR sequences of HER2, HER3, PIK3R2, and AKT1 target genes. When miR-512-3p was overexpressed, BAX/BCL2 expression ratio and proportion of sub-G1 cell population were increased in transfected SKBR3 cells, detected by RT-qPCR and flow cytometry, respectively. These results were consistent with the decreased viability of transfected cells, documented by MTT assay. In addition, results were consistent with the upregulation of BAX, BAK, BOK, PTEN, P53, and P21 genes and downregulation of CCND1 gene in SKBR3 cells. Although the overexpression of miR-512 resulted in cell cycle arrest at Sub-G1 stage in MDA-MB-231 cells, this effect seemed independent of targeting HER2, HER3, PIK3R2, and AKT1 target genes. CONCLUSION: Overall, results indicated that miR-512-3p acts as a cell-type-specific tumor suppressor, through targeting HER2, HER3, PIK3R2, and AKT1 transcripts. These results suggest miR-512-3p as a potential candidate marker for breast cancer diagnosis.


Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias da Mama/genética , Feminino , Humanos , MicroRNAs/genética , Transdução de Sinais , Regulação para Cima
15.
Biol Chem ; 402(4): 469-480, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33938174

RESUMO

TGFß signaling is a known pathway to be involved in colorectal cancer (CRC) progression and miRNAs play crucial roles by regulating different components of this pathway. Hence, finding the link between miRNAs and the pathway could be beneficial for CRC therapy. Array data indicated that miR-186-5p is a differentially expressed miRNA in colorectal Tumor/Normal tissues and bioinformatics tools predicted SMAD6/7 (inhibitory SMADs) as bona fide targets of this miRNA. Here, we intended to investigate the regulatory effect of the miR-186-5p expression on TGFß signaling in CRC. Firstly, the miR-186-5p overexpression in HCT116 cells resulted in a significant reduction of SMAD6/7 expression, measured through RT-qPCR. Then, the direct interactions of miR-186-5p with SMAD6/7 3'UTRs were supported through dual luciferase assay. Furthermore, miR-186-5p overexpression suppressed proliferation, cell viability, and migration while, it increased apoptosis in CRC cells, assessed by cell cycle, MTT, scratch and Annexin V/PI apoptosis assays. Consistently, miR-186-5p overexpression resulted in reduced CyclinD1 protein using western blot, and also resulted in increased P21 and decreased c-Myc expression. Overall, these results introduced miR-186-5p as a cell cycle suppressor through downregulation of SMAD6/7 expression. Thus, miR-186-5p might be served as a novel tumor suppressive biomarker and therapeutic target in CRC treatment.


Assuntos
Neoplasias Colorretais/metabolismo , MicroRNAs/metabolismo , Proteína Smad6/genética , Proteína Smad7/genética , Fator de Crescimento Transformador beta/metabolismo , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Neoplasias Colorretais/patologia , Biologia Computacional , Humanos , MicroRNAs/genética , Transdução de Sinais , Proteína Smad6/metabolismo , Proteína Smad7/metabolismo , Células Tumorais Cultivadas
16.
Heart Fail Rev ; 26(1): 195-203, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31897908

RESUMO

Circular RNAs (circRNAs) are a type of single-stranded RNA molecules that normally do not encode proteins. circRNAs are involved in many physiological processes as well as the pathogenesis of diseases. Cardiac fibrosis is increasingly recognized as a pathological force in advanced heart diseases. A growing number of studies have reported that the occurrence and development of cardiac fibrosis is closely associated with the regulation of circRNAs. This review summarizes the current understanding of circRNA biogenesis and function and will highlight the recent updates regarding the involvement of circRNAs in cardiac fibrosis, and their potential as emerging biomarkers and therapeutic targets.


Assuntos
Medicina de Precisão , RNA Circular , Biomarcadores , Fibrose , Humanos , RNA/genética
17.
J Biochem Mol Toxicol ; 35(10): e22883, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34382723

RESUMO

Colorectal cancer (CRC) is one of the common malignancies worldwide and the Wnt signaling pathway is recognized as the main disrupted pathway in this malignancy. MicroRNAs (miRNAs) are recognized to contribute to the pathogenesis of CRC by triggering or impeding the Wnt signaling pathway. In addition, transcriptional regulation of miRNAs by canonical Wnt signaling also participates in CRC cell progression. In this review, we present comprehensive literature of the existing data on the interaction of miRNAs and Wnt signaling that could be useful in future studies in the field of CRC management.


Assuntos
Neoplasias Colorretais/metabolismo , MicroRNAs/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , Proteínas Wnt/genética , beta Catenina/genética
18.
Biochem J ; 477(12): 2281-2293, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32478824

RESUMO

The pluripotency factor, OCT4 gene is a stemness marker that is involved in the tumorigenicity of different cancer types and knowing about molecular mechanisms of its regulation is crucially important. To date, a few microRNAs (miRNAs) are known to be regulators of OCT4 gene expression. Looking for the novel miRNAs which are capable of regulating OCT4 gene expression, our bioinformatics analysis introduced hsa-miR-3658 (miR-3658) as a bona fide candidate. Then, RT-qPCR results indicated that miR-3658 expression is decreased in colorectal cancer (CRC) tumor tissues, compared with normal pairs. Furthermore, RT-qPCR and western blot analysis showed that the OCT4 gene has been down-regulated following the miR-3658 overexpression. Consistently, dual-luciferase assay supported the direct interaction of miR-3658 with the 3'-UTR sequence of OCT4 gene. Unlike in HCT116 cells, overexpression of miR-3658 in SW480 cells brought about growth inhibition, cell cycle arrest and reduced cell migration, detected by flow cytometry, and scratch test assay. Overall, these findings demonstrated that miR-3658 as a tumor suppressor miRNA exerts its effect against OCT4 gene expression, and it has the potential of being used as a prognostic marker and therapeutic target against colorectal cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Movimento Celular , Proliferação de Células , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Ciclo Celular , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Humanos , Fator 3 de Transcrição de Octâmero/genética , Prognóstico , Células Tumorais Cultivadas
19.
Genomics ; 112(3): 2615-2622, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32068121

RESUMO

Lung cancer is a leading cause of cancer-related death in the world. Therefore, identifying the genes and molecular pathways involved in lung development and tumorigenesis can help us improve the therapeutic strategies of lung cancer. Accumulating evidence confirms that long noncoding RNAs, as a novel layer of regulatory RNA molecules, play an important role in various aspects of the cells. Here, using available high throughput gene expression data, we identified an lncRNA (HSPC324) with high expression level in lung tissue that is distinctly expressed in lung tumor tissues relative to normal. Using GO enrichment and KEGG pathway analyses, we further analyzed the functions and pathways involving the HSPC324-correlated genes. Ectopic expression of lncRNA HSPC324 significantly inhibited proliferation, cell cycle and migration; on the other hand, increased apoptosis and ROS production in lung adenocarcinoma cells. Overall, this study introduces HSPC324 as a new player in the development of lung cancer.


Assuntos
Neoplasias Pulmonares/genética , Pulmão/crescimento & desenvolvimento , RNA Longo não Codificante/fisiologia , Apoptose , Carcinogênese/genética , Ciclo Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo
20.
J Cell Biochem ; 121(5-6): 3438-3450, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31898360

RESUMO

GATA4 gene is a zinc-finger transcription factor known to be involved in cardiogenesis and the progression of different cancer types. Its diverse functions might be attributed to noncoding RNAs that could be embedded within its sequence. Here, we predicted a stable RNA stem-loop structure that is located in the second intron of the GATA4 gene. Available microRNA (miRNA) sequencing data and molecular genetics tools confirmed the identity of a mature miRNA (named GATA4-miR1) originating from the predicted stem-loop. In silico analysis predicted IGF-1R and AKT1/2 genes as potential targets for GATA4-miR1. Indeed, direct interactions between GATA4-miR1 and 3' untranslated regions sequences of IGF-1R and AKT1/2 genes were documented by dual luciferase assay. In addition, overexpression of GATA4-miR1 in SW480 cells resulted in the reduction of IGF-1R and AKT1/2 genes' expression, detected by reverse transcription quantitative (RT-q) polymerase chain reaction and Western blot analysis. This observation was consistent with a deduced negative correlation between the expression patterns of GATA4-miR1 and IGF-1R genes during cardiomyocyte differentiation. Moreover, overexpressing GATA4-miR1 in SW480 and PC3 cells resulted in a significant increase of the sub-G1 population in both cell lines, as detected by propidium iodide flow cytometry. Further analysis by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay indicated a reduction in the survival and proliferation rates of SW480 cells overexpressing GATA4-miR1, but no impact was observed on apoptosis progression, as indicated by Annexin-V flow cytometry. Overall, GATA4-miR1 represents a promising candidate for further research in the fields of cancer and cardiovascular therapeutics.


Assuntos
Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Apoptose/genética , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional , Perfilação da Expressão Gênica , Células HEK293 , Coração/fisiologia , Humanos , Células K562 , MicroRNAs/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA