Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Fish Biol ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853288

RESUMO

The ontogenetic development in teleost fish is sensitive to temperature, and the developmental rate has a direct relationship with the environmental temperature within a species' thermal tolerance limit. Temperature determines time to and survival at hatching. Yellow perch is a North American species of ecological and commercial importance, and its phenology is vulnerable to climate change. The embryonic development of yellow perch was comparable to closely related members of the family Percidae. Developmental progression was fastest at 18°C and slowest at 12°C, with medial progression at 15°C. Time to hatch and swim-up, feeding onset, and exogenous feeding phases were different across all incubation temperatures regardless of a gradual post-hatch warming of the 12 and 15°C groups to a common garden temperature of 18°C. Incubation temperature may lower the rate of survival to hatch at 15°C and had complex impacts on developmental abnormalities. Temperature had significant effects on the development rate, time of hatch, survival, and incidence of developmental abnormalities. Early ontogenetic thermal history in ectotherms is an important factor determining phenotypic variation. It will be important to link the thermally induced changes in development described here to the physiological and morphological differences and to link the developmental abnormalities to functional performance.

2.
J Therm Biol ; 104: 103185, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35180964

RESUMO

Long-term temperature shifts associated with seasonal variability are common in temperate regions. However, these natural shifts could place significant strain on thermal stress responses of fishes when combined with mean increases in water temperatures predicted by climate change models. We examined the relationship between thermal acclimation, basal expression of heat shock protein (hsp) genes and the activation of the heat shock response (HSR) in lake whitefish (LWF; Coregonus clupeaformis), a cold water species of cultural and commercial significance. Juveniles were acclimated to either 6, 12, or 18°C water for several months prior to the quantification of hsp mRNA levels in the presence or absence of acute heat shock (HS). Acclimation to 18°C increased basal mRNA levels of hsp70 and hsp47, but not hsc70 or hsp90ß in gill, liver and white muscle, while 6°C acclimation had no effect on basal hsp transcription. Fish in all acclimation groups were capable of eliciting a robust HSR following acute HS, as indicated by the upregulation of hsp70 and hsp47. An increase of only 2°C above the 18°C acclimation temperature was required to trigger these transcriptional changes, suggesting that the HSR may be frequently initiated in LWF populations living at mildly elevated temperatures. Collectively, these expression profiles show that environmental temperature influences both basal hsp levels and the HSR in LWF, and indicate that these fish may have a greater physiological and ecological susceptibility to elevated temperatures than to cooler temperatures.


Assuntos
Proteínas de Choque Térmico HSP47/genética , Proteínas de Choque Térmico HSP70/genética , Resposta ao Choque Térmico/genética , Salmonidae/genética , Aclimatação , Animais , Mudança Climática , Expressão Gênica , Lagos , RNA Mensageiro/genética , Temperatura , Regulação para Cima/genética
3.
J Exp Biol ; 224(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34137867

RESUMO

Characterizing the thermal preference of fish is important in conservation, environmental and evolutionary physiology and can be determined using a shuttle box system. Initial tank acclimation and trial lengths are important considerations in experimental design, yet systematic studies of these factors are missing. Three different behavioral assay experimental designs were tested to determine the effect of tank acclimation and trial length (hours of tank acclimation:behavioral trial: 12:12, 0:12, 2:2) on the temperature preference of juvenile lake whitefish (Coregonus clupeaformis), using a shuttle box. Average temperature preferences for the 12 h:12 h, 0 h:12 h, 2 h:2 h experimental designs were 16.10±1.07°C, 16.02±1.56°C and 16.12±1.59°C respectively, with no significant differences between experimental designs (P=0.9337). Ultimately, length of acclimation time and trial length had no significant effect on thermal preference.


Assuntos
Aclimatação , Salmonidae , Animais , Evolução Biológica , Temperatura
4.
J Therm Biol ; 100: 103036, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34503783

RESUMO

We examined the impact of repeated thermal stress on the heat shock response (HSR) of thermally sensitive lake whitefish (Coregonus clupeaformis) embryos. Our treatments were designed to mimic temperature fluctuations in the vicinity of industrial thermal effluents. Embryos were either maintained at control temperatures (3 oC) or exposed to a repeated thermal stress (TS) of 3 or 6 oC above control temperature every 3 or 6 days throughout embryonic development. At 82 days post-fertilisation, repeated TS treatments were stopped and embryos received either a high level TS of 12, 15, or 18 oC above ambient temperature for 1 or 4 h, or no additional TS. These treatments were carried out after a 6 h recovery from the last repeated TS. Embryos in the no repeated TS group responded, as expected, with increases in hsp70 mRNA in response to 12, 15 and 18 oC high-level TS. However, exposure to repeated TS of 3 or 6 °C every 6 days also resulted in a significant upregulation of hsp70 mRNA relative to the controls. Importantly, these repeated TS events and the associated elevations in hsp70 attenuated the upregulation of hsp70 in response to a 1 h, high-level TS of 12 oC above ambient, but not to either longer (4 h) or higher (15 or 18 oC) TS events. Conversely, hsp90α mRNA levels were not consistently elevated in the no repeated TS groups exposed to high-level TS. In some instances, hsp90α levels appeared to decrease in embryos exposed to repeated TS followed by a high-level TS. The observed attenuation of the HSR in lake whitefish embryos demonstrates that embryos of this species have plasticity in their HSR and repeated TS may protect against high-level TS, but the response differs based on repeated TS treatment, high-level TS temperature and duration, and the gene of interest.


Assuntos
Resposta ao Choque Térmico , Salmonidae/metabolismo , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Salmonidae/embriologia
5.
J Fish Biol ; 97(1): 113-120, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32222964

RESUMO

A laboratory flume was constructed to examine substrate effects on aquatic development. The flume was designed as a once-through system with a submerged cobble-filled corebox. Lake whitefish (Coregonus clupeaformis) embryos and temperature probes were deployed at multiple sites within the cobble and in the open water channel. Embryos were incubated in the flume for two different experimental periods: one to examine substrate impacts during natural lake cooling (37 days: 5 December 2016 to 10 January 2017) and the second to investigate substrate effects while administering a twice weekly 1 h heat shock (51 days: 11 January to 2 March 2017). During incubation, no significant difference was found in the average temperature between locations; however, temperatures were more stable within the cobble. Following both incubation periods, embryos retrieved from the cobble were significantly smaller in both dry mass and body length by up to 20%. These results demonstrate differences between embryos submerged in a cobble substrate and in the open water column, highlighting the need to consider the physical influences from the incubation environment when assessing development effects as part of any scientific study or environmental assessment.


Assuntos
Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/fisiologia , Salmonidae/embriologia , Animais , Meio Ambiente , Salmonidae/fisiologia , Temperatura
6.
Artigo em Inglês | MEDLINE | ID: mdl-30114471

RESUMO

Lake whitefish (Coregonus clupeaformis) utilize overwintering embryonic development (up to 180 days), and such stenothermic, cold-water embryos may be particularly susceptible to thermal shifts. We incubated whitefish embryos in temperature treatments that were constant temperature (2.0 ±â€¯0.1 °C, 5.0 ±â€¯0.1 °C, and 8.0 ±â€¯0.1 °C; mean ±â€¯SD) or variable temperature (VT, mean = 5.0 ±â€¯0.3 °C). In the VT, a daily 2 °C temperature change followed a continuous pattern throughout development: 2-4-6-8-6-4-2 °C. Hatchling survival proportion from fertilization to hatch was significantly impacted by incubation temperature (P < 0.001): 2 °C (0.88 ±â€¯0.01) and 5 °C (0.91 ±â€¯0.01) showed higher survival than both the VT (0.83 ±â€¯0.02) and 8 °C groups (0.15 ±â€¯0.06), which were statistically distinct from each other. Time to hatch (dpf) was significantly different across all treatments (P < 0.001): 8 °C (68 ±â€¯2 dpf), VT (111 ±â€¯4 dpf), 5 °C (116 ±â€¯4 dpf), 2 °C (170 ±â€¯3 dpf). Likewise, hatchling yolk-free dry mass (mg) and total body length (mm) were significantly different across all treatments (P < 0.001): 8 °C (0.66 ±â€¯0.08 mg; 11.1 ±â€¯0.08 mm), VT (0.97 ±â€¯0.06 mg; 11.7 ±â€¯0.05 mm), 5 °C (1.07 ±â€¯0.03 mg; 12.0 ±â€¯0.02 mm), 2 °C (1.36 ±â€¯0.04 mg; 12.8 ±â€¯0.05 mm). Oxygen consumption rate (V̇o2) was significantly affected by the interaction between treatment and measurement temperature (P < 0.001). Hatchling VT whitefish showed mean V̇o2 that was higher compared to the 2 °C group measured at 2 °C, and lower compared to the 2 °C and 5 °C group measured at 8 °C. This study demonstrates that the VT incubation treatment produced fewer (increased mortality), smaller embryos that hatched earlier than 2 °C and 5 °C embryos. The plasticity of V̇o2 for this stenothermic-incubating fish species under variable incubation conditions reveals a metabolic cost to cycling thermal incubation conditions.


Assuntos
Salmonidae/fisiologia , Animais , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Consumo de Oxigênio/fisiologia , Salmonidae/embriologia , Salmonidae/crescimento & desenvolvimento , Salmonidae/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-28855119

RESUMO

Fluctuating incubation temperatures may have significant effects on fish embryogenesis; yet most laboratory-based studies use constant temperatures. For species that experience large, natural seasonal temperature changes during embryogenesis, such as lake whitefish (Coregonus clupeaformis), seasonal temperature regimes are likely optimal for development. Anthropogenic activities can increase average and/or variability of natural incubation temperatures over large (e.g. through climate change) or smaller (e.g. thermal effluent discharge) geographic scales. To investigate this, we incubated lake whitefish embryos under constant (2, 5, or 8°C) and fluctuating temperature regimes. Fluctuating temperature regimes had a base temperature of 2°C with: 1) seasonal temperature changes that modeled natural declines/inclines; 2) tri-weekly +3°C, 1h temperature spikes; or 3) both seasonal temperature changes and temperature spikes. We compared mortality to hatch, morphometrics, and heart rate at three developmental stages. Mortality rate was similar for embryos incubated at constant 2°C, constant 5°C, or with seasonal temperatures, but was significantly greater at constant 8°C. Embryos incubated constantly at >2°C had reduced body growth and yolk consumption compared to embryos incubated with seasonal temperature changes. When measured at the common base temperature of 2°C, embryos incubated at constant 2°C had lower heart rates than embryos incubated with both seasonal temperature changes and temperature spikes. Our study suggests that incubating lake whitefish embryos with constant temperatures may significantly alter development, growth, and heart rate compared to incubating with seasonal temperature changes, emphasizing the need to include seasonal temperature changes in laboratory-based studies.


Assuntos
Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Salmonidae/embriologia , Estresse Fisiológico , Termotolerância , Animais , Aquicultura , Fertilização in vitro/veterinária , Great Lakes Region , Frequência Cardíaca , Temperatura Alta/efeitos adversos , Lagos , Ontário , Distribuição Aleatória , Salmonidae/crescimento & desenvolvimento , Salmonidae/fisiologia , Estações do Ano , Análise de Sobrevida , Saco Vitelino/embriologia , Saco Vitelino/fisiologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-27686607

RESUMO

Lipids serve as energy sources, structural components, and signaling molecules during fish embryonic development, and utilization of lipids may vary with temperature. Embryonic energy utilization under different temperatures is an important area of research in light of the changing global climate. Therefore, we examined percent lipid content and fatty acid profiles of lake whitefish (Coregonus clupeaformis) throughout embryonic development at three incubation temperatures. We sampled fertilized eggs and embryos at gastrulation, eyed and fin flutter stages following chronic incubation at temperatures of 1.8, 4.9 and 8.0°C. Hatchlings were also sampled following incubation at temperatures of 3.3, 4.9 and 8.0°C. Fertilized eggs had an initial high percentage of dry mass composed of lipid (percent lipid content; ~29%) consisting of ~20% saturated fatty acids (SFA), ~32% monounsaturated fatty acids (MUFA), ~44% polyunsaturated fatty acids (PUFA), and 4% unidentified. The most abundant fatty acids were 16:0, 16:1, 18:1(n-9c), 20:4(n-6), 20:5(n-3) and 22:6(n-3). This lipid profile matches that of other cold-water fish species. Percent lipid content increased during embryonic development, suggesting protein or other yolk components were preferentially used for energy. Total percentage of MUFA decreased during development, which indicated MUFA were the primary lipid catabolized for energy during embryonic development. Total percentage of PUFA increased during development, driven largely by an increase in 22:6(n-3). Temperature did not influence percent lipid content or percent MUFA at any development stage, and had inconsistent effects on percent SFA and percent PUFA during development. Thus, lake whitefish embryos appear to be highly adapted to low temperatures, and do not alter lipids in response to temperature within their natural incubation conditions.


Assuntos
Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Salmonidae/fisiologia , Zigoto/metabolismo , Animais , Temperatura Baixa/efeitos adversos , Metabolismo Energético , Feminino , Ionização de Chama/veterinária , Gastrulação , Lagos , Masculino , Ontário , Salmonidae/embriologia , Salmonidae/crescimento & desenvolvimento
9.
J Therm Biol ; 69: 294-301, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29037397

RESUMO

Lake whitefish (Coregonus clupeaformis) embryos were exposed to thermal stress (TS) at different developmental stages to determine when the heat shock response (HSR) can be initiated and if it is altered by exposure to repeated TS. First, embryos were subject to one of three different TS temperatures (6, 9, or 12°C above control) at 4 points in development (21, 38, 60 and 70 days post-fertilisation (dpf)) for 2h followed by a 2h recovery to understand the ontogeny of the HSR. A second experiment explored the effects of repeated TS on the HSR in embryos from 15 to 75 dpf. Embryos were subjected to one of two TS regimes; +6°C TS for 1h every 6 days or +9°C TS for 1h every 6 days. Following a 2h recovery, a subset of embryos was sampled. Our results show that embryos could initiate a HSR via upregulation of heat shock protein 70 (hsp70) mRNA at all developmental ages studied, but that this response varied with age and was only observed with a TS of +9 or +12°C. In comparison, when embryos received multiple TS treatments, hsp70 was not induced in response to the 1h TS and 2h recovery, and a downregulation was observed at 39 dpf. Downregulation of hsp47 and hsp90α mRNA was also observed in early age embryos. Collectively, these data suggest that embryos are capable of initiating a HSR at early age and throughout embryogenesis, but that repeated TS can alter the HSR, and may result in either reduced responsiveness or a downregulation of inducible hsps. Our findings warrant further investigation into both the short- and long-term effects of repeated TS on lake whitefish development.


Assuntos
Resposta ao Choque Térmico , Salmonidae/embriologia , Animais , Regulação para Baixo , Embrião não Mamífero/embriologia , Embrião não Mamífero/fisiologia , Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico HSP47/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética , Temperatura Alta , RNA Mensageiro/genética , Salmonidae/fisiologia , Regulação para Cima
10.
Artigo em Inglês | MEDLINE | ID: mdl-26658267

RESUMO

We investigated the effects of thermal stress on embryonic (fin flutter, vitelline circulation stage) and young of the year (YOY) juvenile lake whitefish by characterizing the kinetics of the heat shock response (HSR). Lake whitefish were subjected to one of three different heat shock (HS) temperatures (3, 6, or 9 °C above control) for six different lengths of time (0.25, 0.50, 1, 2, 3, or 4h) followed by a 2h recovery period at the control temperature of 2 °C or 14 °C for embryos and YOY juveniles, respectively. The duration of the HSR was examined by allowing the fish to recover for 1, 2, 4, 8, 12, 16, 24, 36, or 48 h following a 2h HS. In embryos, at the fin flutter stage, only hsp70 mRNA levels were upregulated in response to the various HS treatments. By comparison, all three typically inducible hsps, hsp90α, hsp70 and hsp47, were upregulated in the YOY juveniles. In both instances the HSR was long lasting, but much more so in embryos where hsp70 mRNA levels continued to increase for 48 h after a 2h HS and remained significantly higher than untreated controls. Collectively our data indicate that both embryo and YOY juvenile lake whitefish have a robust HSR which permits them to survive a 4h, 9 °C HS. Moreover, both life history stages are capable of triggering a HSR following a moderate 3 °C HS which is likely an important protective mechanism against environmental stressors during embryogenesis and early life history stages of lake whitefish.


Assuntos
Desenvolvimento Embrionário/genética , Peixes/genética , Resposta ao Choque Térmico/genética , Animais , Proteínas de Choque Térmico HSP70/genética , Lagos , RNA Mensageiro/genética , Temperatura , Regulação para Cima/genética
11.
J Therm Biol ; 57: 11-20, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27033035

RESUMO

Increasing incubation temperatures, caused by global climate change or thermal effluent from industrial processes, may influence embryonic development of fish. This study investigates the cumulative effects of increased incubation temperature and repeated heat shocks on developing Lake Whitefish (Coregonus clupeaformis) embryos. We studied the effects of three constant incubation temperatures (2°C, 5°C or 8°C water) and weekly, 1-h heat shocks (+3°C) on hatching time, survival and morphology of embryos, as these endpoints may be particularly susceptible to temperature changes. The constant temperatures represent the predicted magnitude of elevated water temperatures from climate change and industrial thermal plumes. Time to the pre-hatch stage decreased as constant incubation temperature increased (148d at 2°C, 92d at 5°C, 50d at 8°C), but weekly heat shocks did not affect time to hatch. Mean survival rates and embryo morphometrics were compared at specific developmental time-points (blastopore, eyed, fin flutter and pre-hatch) across all treatments. Constant incubation temperatures or +3°C heat-shock exposures did not significantly alter cumulative survival percentage (~50% cumulative survival to pre-hatch stage). Constant warm incubation temperatures did result in differences in morphology in pre-hatch stage embryos. 8°C and 5°C embryos were significantly smaller and had larger yolks than 2°C embryos, but heat-shocked embryos did not differ from their respective constant temperature treatment groups. Elevated incubation temperatures may adversely alter Lake Whitefish embryo size at hatch, but weekly 1-h heat shocks did not affect size or survival at hatch. These results suggest that intermittent bouts of warm water effluent (e.g., variable industrial emissions) are less likely to negatively affect Lake Whitefish embryonic development than warmer constant incubation temperatures that may occur due to climate change.


Assuntos
Resposta ao Choque Térmico , Salmonidae/fisiologia , Animais , Embrião não Mamífero/fisiologia , Feminino , Temperatura Alta , Masculino , Salmonidae/crescimento & desenvolvimento
12.
Ecotoxicology ; 23(3): 419-28, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24515398

RESUMO

Mercury and selenium concentrations were measured in double-crested cormorants (Phalacrocorax auritus), piscivorous fish, and common prey items in five lakes in two ecoregions in Saskatchewan, Canada. Hg and Se concentrations in cormorants were within the natural ranges of birds living in un-impacted sites. Site explained a significant proportion of the variation in total Hg (THg) and methylmercury (MeHg) concentrations in both cormorant breast muscle and livers. Birds nesting on more northern lakes in the Boreal Plain ecoregion (THg range 0.11-1.06 and 0.26-9.27 µg g(-1) wet weight, for breast and liver respectively) had lower THg concentrations compared to those from lakes in the Prairie ecoregion (THg range 0.60-4.26 µg g(-1) ww and 1.59-25.11 µg g(-1), for breast and liver respectively). Concentrations of MeHg in livers was also lower in birds from northern sites (0.06-1.15 µg g(-1) ww) compared to those from prairie sites (0.22-4.06 µg g(-1) ww). We documented a wide range of %MeHg in livers (4.5-52 %), indicative of detoxifying MeHg via demethylation to inorganic Hg. Our data suggest that the threshold value where demethylation rates increase substantially appears to be ~10 µg g(-1) ww MeHg, similar to thresholds in other wildlife. Molar ratios of Hg:Se suggests that some birds from highly saline Reed Lake in the prairie region had insufficient Se available to bind to Hg, thereby removing Se binding as a mitigative strategy for high Hg levels for these birds.


Assuntos
Aves , Monitoramento Ambiental/métodos , Mercúrio/análise , Poluentes Químicos da Água/análise , Animais , Canadá , Comportamento Alimentar , Cadeia Alimentar , Inativação Metabólica , Lagos , Fígado , Mercúrio/farmacocinética , Compostos de Metilmercúrio/análise , Músculo Esquelético , Percas , Comportamento Predatório , Saskatchewan , Selênio/análise , Distribuição Tecidual , Poluentes Químicos da Água/farmacocinética
13.
Mutat Res ; 752(1): 6-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22935230

RESUMO

Next-generation sequencing technologies can now be used to directly measure heritable de novo DNA sequence mutations in humans. However, these techniques have not been used to examine environmental factors that induce such mutations and their associated diseases. To address this issue, a working group on environmentally induced germline mutation analysis (ENIGMA) met in October 2011 to propose the necessary foundational studies, which include sequencing of parent-offspring trios from highly exposed human populations, and controlled dose-response experiments in animals. These studies will establish background levels of variability in germline mutation rates and identify environmental agents that influence these rates and heritable disease. Guidance for the types of exposures to examine come from rodent studies that have identified agents such as cancer chemotherapeutic drugs, ionizing radiation, cigarette smoke, and air pollution as germ-cell mutagens. Research is urgently needed to establish the health consequences of parental exposures on subsequent generations.


Assuntos
Interação Gene-Ambiente , Doenças Genéticas Inatas/genética , Genômica , Animais , Poluentes Ambientais/toxicidade , Mutação em Linhagem Germinativa , Humanos , Efeitos da Radiação , Produtos do Tabaco/efeitos adversos
14.
Anat Rec (Hoboken) ; 306(6): 1481-1500, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35657025

RESUMO

Previously, only a single member of Pan-Kinosternidae (Yelmochelys rosarioae) had been documented from the Late Cretaceous epoch. In this report we describe a new pan-kinosternid genus and species, herein named Leiochelys tokaryki, based on a nearly complete, articulated skeleton from the Late Cretaceous (Maastrichtian) Frenchman Formation of Saskatchewan, Canada. L. tokaryki differs most notably from the previously described Y. rosarioae in having triangular plastral lobes, and in that the suture between the hyo- and hypoplastron is in line with the suture between the fifth and sixth peripherals. A maximum parsimony analysis suggests that L. tokaryki is intermediate between Y. rosarioae and crown-group kinosternids. Kinosternid features present in L. tokaryki include the presence of a reduced plastral bridge that extends from the posterior tip of peripheral 4 to the anterior tip of peripheral 7, two inframarginals that contact one another, a smooth triturating surface, and participation of the palatine in the triturating surface. An unexpected feature of the skull is the presence of a large stapedial canal, suggesting that the decrease in size of the stapedial canal and increase in the canalis caroticus cerebralis occurred independently in Dermatemydidae and Kinosternidae. The character-states of the skull and skeleton of L. tokaryki indicate that morphological changes occurring during the diversification of Kinosternoidea were more complex than expected based on data from derived members of the group.


Assuntos
Dinossauros , Crânio , Animais , Saskatchewan , Crânio/anatomia & histologia , Répteis/anatomia & histologia , Cabeça/anatomia & histologia , Fósseis , Filogenia , Dinossauros/anatomia & histologia
15.
Conserv Physiol ; 11(1): coad067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663927

RESUMO

Anthropogenic impacts can lead to increased temperatures in freshwater environments through thermal effluent and climate change. Thermal preference of aquatic organisms can be modulated by abiotic and biotic factors including environmental temperature. Whether increased temperature during embryogenesis can lead to long-term alterations in thermal preference has not been explicitly tested in native freshwater species. Lake (Coregonus clupeaformis) and round (Prosopium cylindraceum) whitefish were incubated at natural and elevated temperatures until hatching, following which, all groups were moved to common garden conditions (15°C) during the post-hatching stage. Temperature preference was determined at 8 months (Lake whitefish only) and 12 months of age (both species) using a shuttle box system. Round whitefish preferred a cooler temperature when incubated at 2 and 6°C compared with 0.5°C. Lake whitefish had similar temperature preferences regardless of age, weight and incubation temperature. These results reveal that temperature preference in freshwater fish can be programmed during early development, and that round whitefish may be more sensitive to incubation temperature. This study highlights the effects that small increases in temperature caused by anthropogenic impacts may have on cold-adapted freshwater fish.

16.
Mutat Res ; 750(2): 96-106, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22178956

RESUMO

Factors affecting the type and frequency of germline mutations in animals are of significant interest from health and toxicology perspectives. However, studies in this field have been limited by the use of markers with low detection power or uncertain relevance to phenotype. Whole genome sequencing (WGS) is now a potential option to directly determine germline mutation type and frequency in family groups at all loci simultaneously. Medical studies have already capitalized on WGS to identify novel mutations in human families for clinical purposes, such as identifying candidate genes contributing to inherited conditions. However, WGS has not yet been used in any studies of vertebrates that aim to quantify changes in germline mutation frequency as a result of environmental factors. WGS is a promising tool for detecting mutation induction, but it is currently limited by several technical challenges. Perhaps the most pressing issue is sequencing error rates that are currently high in comparison to the intergenerational mutation frequency. Different platforms and depths of coverage currently result in a range of 10-10(3) false positives for every true mutation. In addition, the cost of WGS is still relatively high, particularly when comparing mutation frequencies among treatment groups with even moderate sample sizes. Despite these challenges, WGS offers the potential for unprecedented insight into germline mutation processes. Refinement of available tools and emergence of new technologies may be able to provide the improved accuracy and reduced costs necessary to make WGS viable in germline mutation studies in the very near future. To streamline studies, researchers may use multiple family triads per treatment group and sequence a targeted (reduced) portion of each genome with high (20-40 ×) depth of coverage. We are optimistic about the application of WGS for quantifying germline mutations, but caution researchers regarding the resource-intensive nature of the work using existing technology.


Assuntos
Genoma Humano , Mutação em Linhagem Germinativa , Taxa de Mutação , Análise de Sequência de DNA , Animais , Biologia Computacional , Humanos , Modelos Animais
17.
PLoS One ; 17(4): e0265316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35377891

RESUMO

Grassland birds in North America face many problems as a result of habitat loss and fragmentation; understanding their habitat requirements is critical for their conservation and management. The sharp-tailed grouse (Tympanuchus phasianellus) can be found throughout North American grasslands and is a species of economic and cultural importance, but it has experienced population declines over the last few decades. A large part of sharp-tailed grouse life history is focused on and around lekking grounds, which makes leks an essential feature for sharp-tailed grouse management. We used information from 596 leks and landcover predictors within 1-km and 5-km squares to perform Habitat Suitability Index modeling for sharp-tailed grouse on the Northern Great Plains in Saskatchewan, Canada. The proportion of grasslands at the 5-km scale and the 1-km scale were the two most important factors affecting lek occurrence (permutation importance = 34.8% and 26.9%, respectively). In every case, the 5-km scale predictors were ranked as having a more significant influence on lek occurrence than the 1-km scale. Other factors of importance included topographic roughness (9.7% permutation importance), and the proportion of human disturbance at the 5-km scale (5% permutation importance). Our study highlights the importance of large patches of grassland to support the occurrence of sharp-tailed grouse leks, and that a diverse set of habitat features are needed for sharp-tailed grouse management.


Assuntos
Galliformes , Animais , Conservação dos Recursos Naturais , Ecossistema , Humanos , América do Norte , Codorniz , Saskatchewan
18.
J Hered ; 102(5): 584-92, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21705489

RESUMO

We examined the mitochondrial genetic structure of American white pelicans (Pelecanus erythrorhynchos) to: 1) verify or refute whether American white pelicans are panmictic and 2) understand if any lack of genetic structure is the result of contemporary processes or historical phenomena. Sequence analysis of mitochondrial DNA control region haplotypes of 367 individuals from 19 colonies located across their North American range revealed a lack of population genetic or phylogeographic structure. This lack of structure was unexpected because: 1) Major geographic barriers such as the North American Continental Divide are thought to limit dispersal; 2) Differences in migratory behavior are expected to promote population differentiation; and 3) Many widespread North American migratory bird species show historic patterns of differentiation resulting from having inhabited multiple glacial refugia. Further, high haplotype diversity and many rare haplotypes are maintained across the species' distribution, despite frequent local extinctions and recolonizations that are expected to decrease diversity. Our findings suggest that American white pelicans have a high effective population size and low natal philopatry. We suggest that the rangewide panmixia we observed in American white pelicans is due to high historical and contemporary gene flow, enabled by high mobility and a lack of effective physical or behavioral barriers.


Assuntos
Aves/genética , DNA Mitocondrial/genética , Fluxo Gênico , Migração Animal , Animais , Aves/classificação , Variação Genética , Genética Populacional , Haplótipos , Filogenia , Filogeografia
19.
Proc Natl Acad Sci U S A ; 105(2): 605-10, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18195365

RESUMO

Particulate air pollution is widespread, yet we have little understanding of the long-term health implications associated with exposure. We investigated DNA damage, mutation, and methylation in gametes of male mice exposed to particulate air pollution in an industrial/urban environment. C57BL/CBA mice were exposed in situ to ambient air near two integrated steel mills and a major highway, alongside control mice breathing high-efficiency air particulate (HEPA) filtered ambient air. PCR analysis of an expanded simple tandem repeat (ESTR) locus revealed a 1.6-fold increase in sperm mutation frequency in mice exposed to ambient air for 10 wks, followed by a 6-wk break, compared with HEPA-filtered air, indicating that mutations were induced in spermatogonial stem cells. DNA collected after 3 or 10 wks of exposure did not exhibit increased mutation frequency. Bulky DNA adducts were below the detection threshold in testes samples, suggesting that DNA reactive chemicals do not reach the germ line and cause ESTR mutation. In contrast, DNA strand breaks were elevated at 3 and 10 wks, possibly resulting from oxidative stress arising from exposure to particles and associated airborne pollutants. Sperm DNA was hypermethylated in mice breathing ambient relative to HEPA-filtered air and this change persisted following removal from the environmental exposure. Increased germ-line DNA mutation frequencies may cause population-level changes in genetic composition and disease. Changes in methylation can have widespread repercussions for chromatin structure, gene expression and genome stability. Potential health effects warrant extensive further investigation.


Assuntos
Poluentes Atmosféricos , Mutação em Linhagem Germinativa , Poluição do Ar , Animais , Adutos de DNA , Dano ao DNA , Metilação de DNA , Análise Mutacional de DNA , Indústrias , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Mutação , Reação em Cadeia da Polimerase/métodos , Sequências Repetitivas de Ácido Nucleico , Espermatozoides/metabolismo
20.
Evol Appl ; 14(4): 965-982, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33897814

RESUMO

Anthropogenic activities may facilitate undesirable hybridization and genomic introgression between fish species. Walleye (Sander vitreus) and sauger (Sander canadensis) are economically valuable freshwater species that can spontaneously hybridize in areas of sympatry. Levels of genomic introgression between walleye and sauger may be increased by modifications to waterbodies (e.g., reservoir development) and inadvertent propagation of hybrids in stocking programs. We used genotyping by sequencing (GBS) to examine 217 fish from two large reservoirs with mixed populations of walleye and sauger in Saskatchewan, Canada (Lake Diefenbaker, Tobin Lake). Analyses with 20,038 (r90) and 478 (r100) single nucleotide polymorphisms clearly resolved walleye and sauger, and classified hybrids with high confidence. F1, F2, and multigeneration hybrids were detected in Lake Diefenbaker, indicating potentially high levels of genomic introgression. In contrast, only F1 hybrids were detected in Tobin Lake. Field classification of fish was unreliable; 7% of fish were misidentified based on broad species categories. Important for activities such as brood stock selection, 12 of 173 (7%) fish field identified as pure walleye, and one of 24 (4%) identified as pure sauger were actually hybrids. In addition, two of 15 (13%) field-identified hybrids were actually pure walleye or sauger. We conclude that hybridization and introgression are occurring in Saskatchewan reservoirs and that caution is warranted when using these populations in stocking programs. GBS offers a powerful and flexible tool for examining hybridization without preidentification of informative loci, eliminating some of the key challenges associated with other marker types.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA