Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 13(3): 3889-901, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23519347

RESUMO

The effects of the SnO2 pore size and metal oxide promoters on the sensing properties of SnO2-based thick film gas sensors were investigated to improve the detection of very low H2S concentrations (<1 ppm). SnO2 sensors and SnO2-based thick-film gas sensors promoted with NiO, ZnO, MoO3, CuO or Fe2O3 were prepared, and their sensing properties were examined in a flow system. The SnO2 materials were prepared by calcining SnO2 at 600, 800, 1,000 and 1,200 °C to give materials identified as SnO2(600), SnO2(800), SnO2(1000), and SnO2(1200), respectively. The Sn(12)Mo5Ni3 sensor, which was prepared by physically mixing 5 wt% MoO3 (Mo5), 3 wt% NiO (Ni3) and SnO2(1200) with a large pore size of 312 nm, exhibited a high sensor response of approximately 75% for the detection of 1 ppm H2S at 350 °C with excellent recovery properties. Unlike the SnO2 sensors, its response was maintained during multiple cycles without deactivation. This was attributed to the promoter effect of MoO3. In particular, the Sn(12)Mo5Ni3 sensor developed in this study showed twice the response of the Sn(6)Mo5Ni3 sensor, which was prepared by SnO2(600) with the smaller pore size than SnO2(1200). The excellent sensor response and recovery properties of Sn(12)Mo5Ni3 are believed to be due to the combined promoter effects of MoO3 and NiO and the diffusion effect of H2S as a result of the large pore size of SnO2.


Assuntos
Sulfeto de Hidrogênio/isolamento & purificação , Nanotecnologia , Estanho/química , Compostos Férricos/química , Gases/isolamento & purificação , Microscopia Eletrônica de Varredura , Molibdênio/química , Níquel/química , Óxidos/química , Óxido de Zinco/química
2.
Kidney Res Clin Pract ; 31(4): 249-52, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26889430

RESUMO

Ethylene glycol (EG) is a sweet-tasting, odorless organic solvent found in many agents, such as anti-freeze. EG is composed of four organic acids: glycoaldehyde, glycolic acid, glyoxylic acid and oxalic acid in vivo. These metabolites are cellular toxins that can cause cardio-pulmonary failure, life-threatening metabolic acidosis, central nervous system depression, and kidney injury. Oxalic acid is the end product of EG, which can precipitate to crystals of calcium oxalate monohydrate in the tubular lumen and has been linked to acute kidney injury. We report a case of EG-induced oxalate nephropathy, with the diagnosis confirmed by kidney biopsy, which showed acute tubular injury of the kidneys with extensive intracellular and intraluminal calcium oxalate monohydrate crystal depositions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA