Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Nucleic Acids Res ; 52(D1): D194-D202, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37587690

RESUMO

N 6-Methyladenosine (m6A) is one of the most abundant internal chemical modifications on eukaryote mRNA and is involved in numerous essential molecular functions and biological processes. To facilitate the study of this important post-transcriptional modification, we present here m6A-Atlas v2.0, an updated version of m6A-Atlas. It was expanded to include a total of 797 091 reliable m6A sites from 13 high-resolution technologies and two single-cell m6A profiles. Additionally, three methods (exomePeaks2, MACS2 and TRESS) were used to identify >16 million m6A enrichment peaks from 2712 MeRIP-seq experiments covering 651 conditions in 42 species. Quality control results of MeRIP-seq samples were also provided to help users to select reliable peaks. We also estimated the condition-specific quantitative m6A profiles (i.e. differential methylation) under 172 experimental conditions for 19 species. Further, to provide insights into potential functional circuitry, the m6A epitranscriptomics were annotated with various genomic features, interactions with RNA-binding proteins and microRNA, potentially linked splicing events and single nucleotide polymorphisms. The collected m6A sites and their functional annotations can be freely queried and downloaded via a user-friendly graphical interface at: http://rnamd.org/m6a.


Assuntos
Bases de Dados Genéticas , Metilação de RNA , RNA Mensageiro , Transcriptoma , Splicing de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Processamento Pós-Transcricional do RNA
2.
Nucleic Acids Res ; 52(D1): D203-D212, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37811871

RESUMO

With recent progress in mapping N7-methylguanosine (m7G) RNA methylation sites, tens of thousands of experimentally validated m7G sites have been discovered in various species, shedding light on the significant role of m7G modification in regulating numerous biological processes including disease pathogenesis. An integrated resource that enables the sharing, annotation and customized analysis of m7G data will greatly facilitate m7G studies under various physiological contexts. We previously developed the m7GHub database to host mRNA m7G sites identified in the human transcriptome. Here, we present m7GHub v.2.0, an updated resource for a comprehensive collection of m7G modifications in various types of RNA across multiple species: an m7GDB database containing 430 898 putative m7G sites identified in 23 species, collected from both widely applied next-generation sequencing (NGS) and the emerging Oxford Nanopore direct RNA sequencing (ONT) techniques; an m7GDiseaseDB hosting 156 206 m7G-associated variants (involving addition or removal of an m7G site), including 3238 disease-relevant m7G-SNPs that may function through epitranscriptome disturbance; and two enhanced analysis modules to perform interactive analyses on the collections of m7G sites (m7GFinder) and functional variants (m7GSNPer). We expect that m7Ghub v.2.0 should serve as a valuable centralized resource for studying m7G modification. It is freely accessible at: www.rnamd.org/m7GHub2.


Assuntos
Bases de Dados de Ácidos Nucleicos , Sequenciamento de Nucleotídeos em Larga Escala , Processamento Pós-Transcricional do RNA , Humanos , Interpretação Estatística de Dados , Guanosina/genética
3.
Plant Physiol ; 195(3): 2143-2157, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38482951

RESUMO

Lamiales is an order of core eudicots with abundant diversity, and many Lamiales plants have important medicinal and ornamental values. Here, we comparatively reanalyzed 11 Lamiales species with well-assembled genome sequences and found evidence that Lamiales plants, in addition to a hexaploidization or whole-genome triplication (WGT) shared by core eudicots, experienced further polyploidization events, establishing new groups in the order. Notably, we identified a whole-genome duplication (WGD) occurred just before the split of Scrophulariaceae from the other Lamiales families, such as Acanthaceae, Bignoniaceae, and Lamiaceae, suggesting its likely being the causal reason for the establishment and fast divergence of these families. We also found that a WGT occurred ∼68 to 78 million years ago (Mya), near the split of Oleaceae from the other Lamiales families, implying that it may have caused their fast divergence and the establishment of the Oleaceae family. Then, by exploring and distinguishing intra- and intergenomic chromosomal homology due to recursive polyploidization and speciation, respectively, we inferred that the Lamiales ancestral cell karyotype had 11 proto-chromosomes. We reconstructed the evolutionary trajectories from these proto-chromosomes to form the extant chromosomes in each Lamiales plant under study. We must note that most of the inferred 11 proto-chromosomes, duplicated during a WGD thereafter, have been well preserved in jacaranda (Jacaranda mimosifolia) genome, showing the credibility of the present inference implementing a telomere-centric chromosome repatterning model. These efforts are important to understand genome repatterning after recursive polyploidization, especially shedding light on the origin of new plant groups and angiosperm cell karyotype evolution.


Assuntos
Cromossomos de Plantas , Evolução Molecular , Genoma de Planta , Poliploidia , Cromossomos de Plantas/genética , Filogenia , Magnoliopsida/genética
4.
Nucleic Acids Res ; 51(D1): D106-D116, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36382409

RESUMO

With advanced technologies to map RNA modifications, our understanding of them has been revolutionized, and they are seen to be far more widespread and important than previously thought. Current next-generation sequencing (NGS)-based modification profiling methods are blind to RNA modifications and thus require selective chemical treatment or antibody immunoprecipitation methods for particular modification types. They also face the problem of short read length, isoform ambiguities, biases and artifacts. Direct RNA sequencing (DRS) technologies, commercialized by Oxford Nanopore Technologies (ONT), enable the direct interrogation of any given modification present in individual transcripts and promise to address the limitations of previous NGS-based methods. Here, we present the first ONT-based database of quantitative RNA modification profiles, DirectRMDB, which includes 16 types of modification and a total of 904,712 modification sites in 25 species identified from 39 independent studies. In addition to standard functions adopted by existing databases, such as gene annotations and post-transcriptional association analysis, we provide a fresh view of RNA modifications, which enables exploration of the epitranscriptome in an isoform-specific manner. The DirectRMDB database is freely available at: http://www.rnamd.org/directRMDB/.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Processamento Pós-Transcricional do RNA , Análise de Sequência de RNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular , Isoformas de Proteínas , RNA/genética , Análise de Sequência de RNA/métodos , Bases de Dados de Ácidos Nucleicos
5.
Nucleic Acids Res ; 51(D1): D1388-D1396, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36062570

RESUMO

Recent advances in epitranscriptomics have unveiled functional associations between RNA modifications (RMs) and multiple human diseases, but distinguishing the functional or disease-related single nucleotide variants (SNVs) from the majority of 'silent' variants remains a major challenge. We previously developed the RMDisease database for unveiling the association between genetic variants and RMs concerning human disease pathogenesis. In this work, we present RMDisease v2.0, an updated database with expanded coverage. Using deep learning models and from 873 819 experimentally validated RM sites, we identified a total of 1 366 252 RM-associated variants that may affect (add or remove an RM site) 16 different types of RNA modifications (m6A, m5C, m1A, m5U, Ψ, m6Am, m7G, A-to-I, ac4C, Am, Cm, Um, Gm, hm5C, D and f5C) in 20 organisms (human, mouse, rat, zebrafish, maize, fruit fly, yeast, fission yeast, Arabidopsis, rice, chicken, goat, sheep, pig, cow, rhesus monkey, tomato, chimpanzee, green monkey and SARS-CoV-2). Among them, 14 749 disease- and 2441 trait-associated genetic variants may function via the perturbation of epitranscriptomic markers. RMDisease v2.0 should serve as a useful resource for studying the genetic drivers of phenotypes that lie within the epitranscriptome layer circuitry, and is freely accessible at: www.rnamd.org/rmdisease2.


Assuntos
Bases de Dados Factuais , Processamento Pós-Transcricional do RNA , Animais , Humanos , Fenótipo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Epigenômica
6.
BMC Bioinformatics ; 25(1): 127, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528499

RESUMO

BACKGROUND: N6-methyladenosine (m6A) is the most prevalent post-transcriptional modification in eukaryotic cells that plays a crucial role in regulating various biological processes, and dysregulation of m6A status is involved in multiple human diseases including cancer contexts. A number of prediction frameworks have been proposed for high-accuracy identification of putative m6A sites, however, none have targeted for direct prediction of tissue-conserved m6A modified residues from non-conserved ones at base-resolution level. RESULTS: We report here m6A-TCPred, a computational tool for predicting tissue-conserved m6A residues using m6A profiling data from 23 human tissues. By taking advantage of the traditional sequence-based characteristics and additional genome-derived information, m6A-TCPred successfully captured distinct patterns between potentially tissue-conserved m6A modifications and non-conserved ones, with an average AUROC of 0.871 and 0.879 tested on cross-validation and independent datasets, respectively. CONCLUSION: Our results have been integrated into an online platform: a database holding 268,115 high confidence m6A sites with their conserved information across 23 human tissues; and a web server to predict the conserved status of user-provided m6A collections. The web interface of m6A-TCPred is freely accessible at: www.rnamd.org/m6ATCPred .


Assuntos
Adenosina , Computadores , Humanos , Aprendizado de Máquina , Processamento Pós-Transcricional do RNA
7.
Am J Hum Genet ; 108(12): 2336-2353, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767756

RESUMO

Knockoff-based methods have become increasingly popular due to their enhanced power for locus discovery and their ability to prioritize putative causal variants in a genome-wide analysis. However, because of the substantial computational cost for generating knockoffs, existing knockoff approaches cannot analyze millions of rare genetic variants in biobank-scale whole-genome sequencing and whole-genome imputed datasets. We propose a scalable knockoff-based method for the analysis of common and rare variants across the genome, KnockoffScreen-AL, that is applicable to biobank-scale studies with hundreds of thousands of samples and millions of genetic variants. The application of KnockoffScreen-AL to the analysis of Alzheimer disease (AD) in 388,051 WG-imputed samples from the UK Biobank resulted in 31 significant loci, including 14 loci that are missed by conventional association tests on these data. We perform replication studies in an independent meta-analysis of clinically diagnosed AD with 94,437 samples, and additionally leverage single-cell RNA-sequencing data with 143,793 single-nucleus transcriptomes from 17 control subjects and AD-affected individuals, and proteomics data from 735 control subjects and affected indviduals with AD and related disorders to validate the genes at these significant loci. These multi-omics analyses show that 79.1% of the proximal genes at these loci and 76.2% of the genes at loci identified only by KnockoffScreen-AL exhibit at least suggestive signal (p < 0.05) in the scRNA-seq or proteomics analyses. We highlight a potentially causal gene in AD progression, EGFR, that shows significant differences in expression and protein levels between AD-affected individuals and healthy control subjects.


Assuntos
Doença de Alzheimer/genética , Bancos de Espécimes Biológicos , Técnicas de Inativação de Genes , Genes erbB-1 , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , RNA-Seq , Transcriptoma , Sequenciamento Completo do Genoma
8.
Nucleic Acids Res ; 50(D1): D196-D203, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34986603

RESUMO

5-Methylcytosine (m5C) is one of the most prevalent covalent modifications on RNA. It is known to regulate a broad variety of RNA functions, including nuclear export, RNA stability and translation. Here, we present m5C-Atlas, a database for comprehensive collection and annotation of RNA 5-methylcytosine. The database contains 166 540 m5C sites in 13 species identified from 5 base-resolution epitranscriptome profiling technologies. Moreover, condition-specific methylation levels are quantified from 351 RNA bisulfite sequencing samples gathered from 22 different studies via an integrative pipeline. The database also presents several novel features, such as the evolutionary conservation of a m5C locus, its association with SNPs, and any relevance to RNA secondary structure. All m5C-atlas data are accessible through a user-friendly interface, in which the m5C epitranscriptomes can be freely explored, shared, and annotated with putative post-transcriptional mechanisms (e.g. RBP intermolecular interaction with RNA, microRNA interaction and splicing sites). Together, these resources offer unprecedented opportunities for exploring m5C epitranscriptomes. The m5C-Atlas database is freely accessible at https://www.xjtlu.edu.cn/biologicalsciences/m5c-atlas.


Assuntos
Bases de Dados Genéticas , Epigenoma/genética , Software , Transcriptoma/genética , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , Humanos , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único/genética , Processamento Pós-Transcricional do RNA/genética , Análise de Sequência de RNA
9.
Nucleic Acids Res ; 50(18): 10290-10310, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36155798

RESUMO

As the most pervasive epigenetic mark present on mRNA and lncRNA, N6-methyladenosine (m6A) RNA methylation regulates all stages of RNA life in various biological processes and disease mechanisms. Computational methods for deciphering RNA modification have achieved great success in recent years; nevertheless, their potential remains underexploited. One reason for this is that existing models usually consider only the sequence of transcripts, ignoring the various regions (or geography) of transcripts such as 3'UTR and intron, where the epigenetic mark forms and functions. Here, we developed three simple yet powerful encoding schemes for transcripts to capture the submolecular geographic information of RNA, which is largely independent from sequences. We show that m6A prediction models based on geographic information alone can achieve comparable performances to classic sequence-based methods. Importantly, geographic information substantially enhances the accuracy of sequence-based models, enables isoform- and tissue-specific prediction of m6A sites, and improves m6A signal detection from direct RNA sequencing data. The geographic encoding schemes we developed have exhibited strong interpretability, and are applicable to not only m6A but also N1-methyladenosine (m1A), and can serve as a general and effective complement to the widely used sequence encoding schemes in deep learning applications concerning RNA transcripts.


Assuntos
Aprendizado Profundo , RNA Longo não Codificante , Regiões 3' não Traduzidas , Metilação , Isoformas de Proteínas/genética , RNA/genética , RNA/metabolismo , RNA Mensageiro/genética
10.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33993206

RESUMO

Motivation N6-methyladenosine (m6A) is the most prevalent RNA modification on mRNAs and lncRNAs. Evidence increasingly demonstrates its crucial importance in essential molecular mechanisms and various diseases. With recent advances in sequencing techniques, tens of thousands of m6A sites are identified in a typical high-throughput experiment, posing a key challenge to distinguish the functional m6A sites from the remaining 'passenger' (or 'silent') sites. Results: We performed a comparative conservation analysis of the human and mouse m6A epitranscriptomes at single site resolution. A novel scoring framework, ConsRM, was devised to quantitatively measure the degree of conservation of individual m6A sites. ConsRM integrates multiple information sources and a positive-unlabeled learning framework, which integrated genomic and sequence features to trace subtle hints of epitranscriptome layer conservation. With a series validation experiments in mouse, fly and zebrafish, we showed that ConsRM outperformed well-adopted conservation scores (phastCons and phyloP) in distinguishing the conserved and unconserved m6A sites. Additionally, the m6A sites with a higher ConsRM score are more likely to be functionally important. An online database was developed containing the conservation metrics of 177 998 distinct human m6A sites to support conservation analysis and functional prioritization of individual m6A sites. And it is freely accessible at: https://www.xjtlu.edu.cn/biologicalsciences/con.


Assuntos
Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , Análise de Sequência de RNA , Software , Transcriptoma , Animais , Humanos , Camundongos , RNA Mensageiro/biossíntese , Peixe-Zebra
11.
Opt Express ; 31(17): 27106-27122, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710792

RESUMO

A 16-channel optical phased array is fabricated on a gallium arsenide photonic integrated circuit platform with a low-complexity process. Tested with a 1064 nm external laser, the array demonstrates 0.92° beamwidth, 15.3° grating-lobe-free steering range, and 12 dB sidelobe level. Based on a reverse biased p-i-n structure, component phase modulators are 3 mm long with DC power consumption of less than 5 µW and greater than 770 MHz electro-optical bandwidth. Separately fabricated 4-mm-long phase modulators based on the same structure demonstrate single-sided Vπ·L modulation efficiency ranging from 0.5 V·cm to 1.22 V·cm when tested at wavelengths from 980 nm to 1360 nm.

12.
Methods ; 203: 226-232, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34843978

RESUMO

With the rapid development of high-throughput sequencing techniques nowadays, extensive attention has been paid to epitranscriptomics, which covers more than 150 distinct chemical modifications to date. Among that, N6-methyladenosine (m6A) modification has the most abundant existence, and it is also significantly related to varieties of biological processes. Meanwhile, maize is the most important food crop and cultivated throughout the world. Therefore, the study of m6A modification in maize has both economic and academic value. In this research, we proposed a weakly supervised learning model to predict the situation of m6A modification in maize. The proposed model learns from low-resolution epitranscriptome datasets (e.g., MeRIP-seq), which predicts the m6A methylation status of given fragments or regions. By taking advantage of our prediction model, we further identified traits-associated SNPs that may affect (add or remove) m6A modifications in maize, which may provide potential regulatory mechanisms at epitranscriptome layer. Additionally, a centralized online-platform was developed for m6A study in maize, which contains 58,838 experimentally validated maize m6A-containing regions including training and testing datasets, and a database for 2,578 predicted traits-associated m6A-affecting maize mutations. Furthermore, the online web server based on proposed weakly supervised model is available for predicting putative m6A sites from user-uploaded maize sequences, as well as accessing the epitranscriptome impact of user-interested maize SNPs on m6A modification. In all, our work provided a useful resource for the study of m6A RNA methylation in maize species. It is freely accessible at www.xjtlu.edu.cn/biologicalsciences/maize.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Zea mays , Adenosina/genética , Adenosina/metabolismo , Metilação , Mutação , Zea mays/genética , Zea mays/metabolismo
13.
Methods ; 203: 328-334, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33540081

RESUMO

N6,2'-O-dimethyladenosine (m6Am) is a reversible modification widely occurred on varied RNA molecules. The biological function of m6Am is yet to be known though recent studies have revealed its influences in cellular mRNA fate. Precise identification of m6Am sites on RNA is vital for the understanding of its biological functions. We present here m6AmPred, the first web server for in silico identification of m6Am sites from the primary sequences of RNA. Built upon the eXtreme Gradient Boosting with Dart algorithm (XgbDart) and EIIP-PseEIIP encoding scheme, m6AmPred achieved promising prediction performance with the AUCs greater than 0.954 when tested by 10-fold cross-validation and independent testing datasets. To critically test and validate the performance of m6AmPred, the experimentally verified m6Am sites from two data sources were cross-validated. The m6AmPred web server is freely accessible at: https://www.xjtlu.edu.cn/biologicalsciences/m6am, and it should make a useful tool for the researchers who are interested in N6,2'-O-dimethyladenosine RNA modification.


Assuntos
Adenosina , RNA , Adenosina/genética , RNA/genética , RNA Mensageiro/genética
14.
Methods ; 203: 378-382, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34245870

RESUMO

The primary sequences of DNA, RNA and protein have been used as the dominant information source of existing machine learning tools, especially for contexts not fully explored by wet-experimental approaches. Since molecular markers are profoundly orchestrated in the living organisms, those markers that cannot be unambiguously recovered from the primary sequence often help to predict other biological events. To the best of our knowledge, there is no current tool to build and deploy machine learning models that consider genomic evidence. We therefore developed the WHISTLE server, the first machine learning platform based on genomic coordinates. It features convenient covariate extraction and model web deployment with 46 distinct genomic features integrated along with the conventional sequence features. We showed that, when predicting m6A sites from SRAMP project, the model integrating genomic features substantially outperformed those based on only sequence features. The WHISTLE server should be a useful tool for studying biological attributes specifically associated with genomic coordinates, and is freely accessible at: www.xjtlu.edu.cn/biologicalsciences/whi2.


Assuntos
Aprendizado de Máquina , RNA , Biologia Computacional , Genômica , RNA/genética , RNA/metabolismo , Análise de Sequência de RNA
15.
Nucleic Acids Res ; 49(D1): D1396-D1404, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33010174

RESUMO

Deciphering the biological impacts of millions of single nucleotide variants remains a major challenge. Recent studies suggest that RNA modifications play versatile roles in essential biological mechanisms, and are closely related to the progression of various diseases including multiple cancers. To comprehensively unveil the association between disease-associated variants and their epitranscriptome disturbance, we built RMDisease, a database of genetic variants that can affect RNA modifications. By integrating the prediction results of 18 different RNA modification prediction tools and also 303,426 experimentally-validated RNA modification sites, RMDisease identified a total of 202,307 human SNPs that may affect (add or remove) sites of eight types of RNA modifications (m6A, m5C, m1A, m5U, Ψ, m6Am, m7G and Nm). These include 4,289 disease-associated variants that may imply disease pathogenesis functioning at the epitranscriptome layer. These SNPs were further annotated with essential information such as post-transcriptional regulations (sites for miRNA binding, interaction with RNA-binding proteins and alternative splicing) revealing putative regulatory circuits. A convenient graphical user interface was constructed to support the query, exploration and download of the relevant information. RMDisease should make a useful resource for studying the epitranscriptome impact of genetic variants via multiple RNA modifications with emphasis on their potential disease relevance. RMDisease is freely accessible at: www.xjtlu.edu.cn/biologicalsciences/rmd.


Assuntos
Bases de Dados Genéticas , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Processamento Pós-Transcricional do RNA , RNA Neoplásico/genética , Processamento Alternativo , Humanos , Internet , MicroRNAs/genética , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único , RNA Neoplásico/classificação , RNA Neoplásico/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Software , Transcriptoma
16.
Nucleic Acids Res ; 49(D1): D134-D143, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-32821938

RESUMO

N 6-Methyladenosine (m6A) is the most prevalent RNA modification on mRNAs and lncRNAs. It plays a pivotal role during various biological processes and disease pathogenesis. We present here a comprehensive knowledgebase, m6A-Atlas, for unraveling the m6A epitranscriptome. Compared to existing databases, m6A-Atlas features a high-confidence collection of 442 162 reliable m6A sites identified from seven base-resolution technologies and the quantitative (rather than binary) epitranscriptome profiles estimated from 1363 high-throughput sequencing samples. It also offers novel features, such as; the conservation of m6A sites among seven vertebrate species (including human, mouse and chimp), the m6A epitranscriptomes of 10 virus species (including HIV, KSHV and DENV), the putative biological functions of individual m6A sites predicted from epitranscriptome data, and the potential pathogenesis of m6A sites inferred from disease-associated genetic mutations that can directly destroy m6A directing sequence motifs. A user-friendly graphical user interface was constructed to support the query, visualization and sharing of the m6A epitranscriptomes annotated with sites specifying their interaction with post-transcriptional machinery (RBP-binding, microRNA interaction and splicing sites) and interactively display the landscape of multiple RNA modifications. These resources provide fresh opportunities for unraveling the m6A epitranscriptomes. m6A-Atlas is freely accessible at: www.xjtlu.edu.cn/biologicalsciences/atlas.


Assuntos
Adenosina/análogos & derivados , Bases de Conhecimento , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Transcriptoma , Adenosina/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Atlas como Assunto , Conjuntos de Dados como Assunto , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , HIV/genética , HIV/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Camundongos , MicroRNAs/metabolismo , Pan troglodytes/genética , Pan troglodytes/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Ratos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Suínos , Peixe-Zebra
17.
Arthroscopy ; 39(5): 1320-1329, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36708748

RESUMO

PURPOSE: To evaluate the role of platelet-rich plasma (PRP) for adhesive capsulitis (AC) as compared with other injectables. METHODS: A literature search of the PubMed and Embase online databases was performed to identify articles evaluating injection therapy for the treatment of AC. The inclusion criteria included prospective studies comparing PRP against alternative injectables with a minimum of 15 patients in each treatment arm and a minimum 12-week follow-up period. Pain scores, range of motion, and function scores were the primary outcomes assessed. RESULTS: Five articles comparing PRP with corticosteroid or saline solution injections met the inclusion criteria. A total of 157 patients were treated with PRP, with a follow-up duration ranging from 3 to 6 months. All 5 studies showed statistically significant improvements in pain scores, motion, and function scores in patients receiving PRP, corticosteroid, and saline solution injections. However, PRP was consistently superior on intergroup analyses in all but 1 study. In 4 studies, pain and function scores favored PRP over control at final follow-up (range in mean difference, -2.2 to 0.69 for visual analog scale pain score [n = 5] and -50.5 to -4.0 for Shoulder Pain and Disability Index score [n = 3]), whereas 3 studies found greater improvement in shoulder motion after PRP (range in mean difference, 0.7° to 34.3° for forward flexion and -2.3° to 20.4° for external rotation [n = 4]). One study found no significant difference between PRP and corticosteroid injections but noted that the results were comparable. CONCLUSIONS: According to a limited number of prospective studies, PRP injections for AC are at least equivalent to corticosteroid or saline solution injections and often lead to improved pain, motion, and functional outcomes at 3- to 6-month follow-up. Given the small number of studies, with design heterogeneity, there is insufficient evidence to routinely recommend PRP for AC. However, the results are promising and do support considering PRP as an adjunct treatment option for AC, especially for patients refractory and/or averse to corticosteroids or alternative treatment modalities. LEVEL OF EVIDENCE: Level II, systematic review of Level I and II studies.


Assuntos
Bursite , Plasma Rico em Plaquetas , Humanos , Estudos Prospectivos , Solução Salina/uso terapêutico , Injeções Intra-Articulares , Corticosteroides , Bursite/tratamento farmacológico , Dor de Ombro , Resultado do Tratamento
18.
Bioinformatics ; 37(Suppl_1): i222-i230, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34252943

RESUMO

MOTIVATION: Increasing evidence suggests that post-transcriptional ribonucleic acid (RNA) modifications regulate essential biomolecular functions and are related to the pathogenesis of various diseases. Precise identification of RNA modification sites is essential for understanding the regulatory mechanisms of RNAs. To date, many computational approaches for predicting RNA modifications have been developed, most of which were based on strong supervision enabled by base-resolution epitranscriptome data. However, high-resolution data may not be available. RESULTS: We propose WeakRM, the first weakly supervised learning framework for predicting RNA modifications from low-resolution epitranscriptome datasets, such as those generated from acRIP-seq and hMeRIP-seq. Evaluations on three independent datasets (corresponding to three different RNA modification types and their respective sequencing technologies) demonstrated the effectiveness of our approach in predicting RNA modifications from low-resolution data. WeakRM outperformed state-of-the-art multi-instance learning methods for genomic sequences, such as WSCNN, which was originally designed for transcription factor binding site prediction. Additionally, our approach captured motifs that are consistent with existing knowledge, and visualization of the predicted modification-containing regions unveiled the potentials of detecting RNA modifications with improved resolution. AVAILABILITY IMPLEMENTATION: The source code for the WeakRM algorithm, along with the datasets used, are freely accessible at: https://github.com/daiyun02211/WeakRM. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA , Software , Algoritmos , Ligação Proteica , RNA/genética , RNA/metabolismo , Análise de Sequência de RNA , Aprendizado de Máquina Supervisionado
19.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362279

RESUMO

One of the most abundant non-canonical bases widely occurring on various RNA molecules is 5-methyluridine (m5U). Recent studies have revealed its influences on the development of breast cancer, systemic lupus erythematosus, and the regulation of stress responses. The accurate identification of m5U sites is crucial for understanding their biological functions. We propose RNADSN, the first transfer learning deep neural network that learns common features between tRNA m5U and mRNA m5U to enhance the prediction of mRNA m5U. Without seeing the experimentally detected mRNA m5U sites, RNADSN has already outperformed the state-of-the-art method, m5UPred. Using mRNA m5U classification as an additional layer of supervision, our model achieved another distinct improvement and presented an average area under the receiver operating characteristic curve (AUC) of 0.9422 and an average precision (AP) of 0.7855. The robust performance of RNADSN was also verified by cross-technical and cross-cellular validation. The interpretation of RNADSN also revealed the sequence motif of common features. Therefore, RNADSN should be a useful tool for studying m5U modification.


Assuntos
Redes Neurais de Computação , RNA de Transferência , RNA Mensageiro/genética , RNA de Transferência/genética , Uridina
20.
BMC Bioinformatics ; 22(1): 152, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33761868

RESUMO

BACKGROUND: Recent studies have confirmed that N7-methylguanosine (m7G) modification plays an important role in regulating various biological processes and has associations with multiple diseases. Wet-lab experiments are cost and time ineffective for the identification of disease-associated m7G sites. To date, tens of thousands of m7G sites have been identified by high-throughput sequencing approaches and the information is publicly available in bioinformatics databases, which can be leveraged to predict potential disease-associated m7G sites using a computational perspective. Thus, computational methods for m7G-disease association prediction are urgently needed, but none are currently available at present. RESULTS: To fill this gap, we collected association information between m7G sites and diseases, genomic information of m7G sites, and phenotypic information of diseases from different databases to build an m7G-disease association dataset. To infer potential disease-associated m7G sites, we then proposed a heterogeneous network-based model, m7G Sites and Diseases Associations Inference (m7GDisAI) model. m7GDisAI predicts the potential disease-associated m7G sites by applying a matrix decomposition method on heterogeneous networks which integrate comprehensive similarity information of m7G sites and diseases. To evaluate the prediction performance, 10 runs of tenfold cross validation were first conducted, and m7GDisAI got the highest AUC of 0.740(± 0.0024). Then global and local leave-one-out cross validation (LOOCV) experiments were implemented to evaluate the model's accuracy in global and local situations respectively. AUC of 0.769 was achieved in global LOOCV, while 0.635 in local LOOCV. A case study was finally conducted to identify the most promising ovarian cancer-related m7G sites for further functional analysis. Gene Ontology (GO) enrichment analysis was performed to explore the complex associations between host gene of m7G sites and GO terms. The results showed that m7GDisAI identified disease-associated m7G sites and their host genes are consistently related to the pathogenesis of ovarian cancer, which may provide some clues for pathogenesis of diseases. CONCLUSION: The m7GDisAI web server can be accessed at http://180.208.58.66/m7GDisAI/ , which provides a user-friendly interface to query disease associated m7G. The list of top 20 m7G sites predicted to be associted with 177 diseases can be achieved. Furthermore, detailed information about specific m7G sites and diseases are also shown.


Assuntos
Biologia Computacional , Neoplasias , Fosfatidilinositol 3-Quinases , Ontologia Genética , Guanosina/análogos & derivados , Humanos , Neoplasias/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA