RESUMO
Head and neck squamous cell carcinomas (HNSCC) remain a poorly understood disease clinically and immunologically. HPV is a known risk factor of HNSCC associated with better outcome, whereas HPV-negative HNSCC are more heterogeneous in outcome. Gene expression signatures have been developed to classify HNSCC into four molecular subtypes (classical, basal, mesenchymal, and atypical). However, the molecular underpinnings of treatment response and the immune landscape for these molecular subtypes are largely unknown. Herein, we described a comprehensive immune landscape analysis in three independent HNSCC cohorts (>700 patients) using transcriptomics data. We assigned the HPV- HNSCC patients into these four molecular subtypes and characterized the tumor microenvironment using deconvolution method. We determined that atypical and mesenchymal subtypes have greater immune enrichment and exhibit a T-cell exhaustion phenotype, compared to classical and basal subtypes. Further analyses revealed different B cell maturation and antibody isotypes enrichment patterns, and distinct immune microenvironment crosstalk in the atypical and mesenchymal subtypes. Taken together, our study suggests that treatments that enhances B cell activity may benefit patients with HNSCC of the atypical subtypes. The rationale can be utilized in the design of future precision immunotherapy trials based on the molecular subtypes of HPV- HNSCC.
Assuntos
Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Neoplasias de Cabeça e Pescoço/genética , Imunoterapia , Microambiente TumoralRESUMO
Small extracellular vesicles (sEVs), a form of extracellular vesicles, are lipid bilayered structures released by all cells. Large-scale studies on sEVs from clinical samples are necessary, but a major obstacle is the lack of rapid, reproducible, efficient, and low-cost methods to enrich sEVs. Acoustic microfluidics have the advantage of being label-free and biocompatible, which have been reported to successfully enrich sEVs. In this paper, we present a highly efficient acoustic microfluidic trap that can offer low and large volume compatible ways of enriching sEVs from biological fluids by flexible structure design. It uses the idea of pre-loading larger seed particles in the acoustic trap to enable sub-micron particle capturing. The microfluidic chip is actuated using a piezoelectric plate transducer attached to a silicon-glass bonding plate with circular cavities. Each cavity works as a resonant unit, excited at the frequency of both the half wave resonance in the main plane and inverted quarter wave resonance in the depth direction, which has the ability to strongly trap seed particles at the center, thereby improving the subsequent nanoparticle capture efficiency. Mean trapping efficiencies of 35.62% and 64.27% were obtained using 60 nm and 100 nm nanobeads, respectively. By the use of this technology, we have successfully enriched sEVs from cell culture conditioned media and blood plasma at a flow rate of 10 µL min-1. The isolated sEV subpopulations are characterized by NTA and TEM, and their protein cargo is determined by WB. This acoustic trapping chip provides a rapid and robust method to enrich sEVs from biofluids with high reproducibility and sufficient quantities. Therefore, it can serve as a new tool for biological and clinical research such as cancer diagnosis and drug delivery.
Assuntos
Acústica , Vesículas Extracelulares , Vesículas Extracelulares/química , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Nanopartículas/química , Dispositivos Lab-On-A-Chip , Meios de Cultivo Condicionados/químicaRESUMO
53BP1 is a chromatin-binding protein that regulates the repair of DNA double-strand breaks by suppressing the nucleolytic resection of DNA termini1,2. This function of 53BP1 requires interactions with PTIP3 and RIF14-9, the latter of which recruits REV7 (also known as MAD2L2) to break sites10,11. How 53BP1-pathway proteins shield DNA ends is currently unknown, but there are two models that provide the best potential explanation of their action. In one model the 53BP1 complex strengthens the nucleosomal barrier to end-resection nucleases12,13, and in the other 53BP1 recruits effector proteins with end-protection activity. Here we identify a 53BP1 effector complex, shieldin, that includes C20orf196 (also known as SHLD1), FAM35A (SHLD2), CTC-534A2.2 (SHLD3) and REV7. Shieldin localizes to double-strand-break sites in a 53BP1- and RIF1-dependent manner, and its SHLD2 subunit binds to single-stranded DNA via OB-fold domains that are analogous to those of RPA1 and POT1. Loss of shieldin impairs non-homologous end-joining, leads to defective immunoglobulin class switching and causes hyper-resection. Mutations in genes that encode shieldin subunits also cause resistance to poly(ADP-ribose) polymerase inhibition in BRCA1-deficient cells and tumours, owing to restoration of homologous recombination. Finally, we show that binding of single-stranded DNA by SHLD2 is critical for shieldin function, consistent with a model in which shieldin protects DNA ends to mediate 53BP1-dependent DNA repair.
Assuntos
Reparo do DNA , Complexos Multiproteicos/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Quebras de DNA de Cadeia Dupla , DNA de Cadeia Simples/genética , Feminino , Genes BRCA1 , Humanos , Switching de Imunoglobulina/genética , Camundongos , Modelos Biológicos , Complexos Multiproteicos/química , Complexos Multiproteicos/deficiência , Complexos Multiproteicos/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas de Ligação a Telômeros/metabolismo , Proteína Supressora de Tumor p53/deficiênciaRESUMO
Paroxetine (PRX) is a common antidepressant drug which widely existence in natural environment. Numerous studies in the past few decades have focused on the beneficial effects of PRX on depression, however, the toxic properties and the potential mechanisms remain unclear. In this study, zebrafish embryos were exposed to 1.0, 5.0, 10 and 20 mg/L of PRX from 4 to 120-hour-post-fertilization (hpf), and it showed that PRX exposure caused adverse effects in zebrafish embryos, including decreased body length, blood flow velocity, cardiac frequency, cardiac output and increased burst activity and atria area. Meanwhile, the Tg (myl7: EGFP) and Tg (lyz: DsRed) transgenic zebrafish were used to detect the cardiotoxicity and inflammation response of PRX. Moreover, the heart development associated genes (vmhc, amhc, hand2, nkx2.5, ta, tbx6, tbx16 and tbx20) and inflammatory genes (IL-10, IL-1ß, IL-8 and TNF-α) were up-regulated after PRX challenge. In addition, Aspirin was used to alleviate the PRX-induced heart development disorder. In conclusion, our study verified the PRX induced inflammatory related cardiotoxicity in larva zebrafish. Meanwhile, the current study shown the toxic effects of PRX in aquatic organism, and provide for the environmental safety of PRX.
Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Cardiotoxicidade , Paroxetina/farmacologia , Larva , Embrião não Mamífero , Inflamação , Poluentes Químicos da Água/toxicidade , Proteínas com Domínio T , Proteínas de Peixe-ZebraRESUMO
BACKGROUND: Bipedicular/unipedicular percutaneous kyphoplasty are common treatments for OVCF, and there are no studies to show which is more beneficial for AVCF. The purpose of this study was to investigate the clinical efficacy of BPKP or UPKP in the treatment of AVCF. METHODS: The clinical data of AVCF patients treated by PKP were retrospectively analyzed. They were divided into two groups according to the surgical approach. General demographic data, perioperative complications, and general information related to surgery were recorded for both groups. The preoperative and postoperative vertebral height difference, vertebral local Cobb angle, lumbar pain VAS score and lumbar JOA score were counted for both groups. The above data were compared preoperatively, postoperatively and between the two groups. RESULTS: 25 patients with AVCF were successfully included and all were followed up for at least 12 months, with no complications during the follow-up period. 10 patients in the BPKP group and 15 patients in the UPKP group, with no statistically significant differences in general information between the two groups. The VAS scores of patients in the BPKP group were lower than those in the UPKP group at 12 months after surgery, and the differences were statistically significant, and there were no statistically significant differences between the two groups at other follow-up time points. In the BPKP group, 80% of patients had symmetrical and more homogeneous bone cement dispersion. 50% of patients in the UPKP group had a lateral distribution of bone cement and uneven bone cement distribution, and the difference in bone cement distribution between the two groups was statistically significant. CONCLUSION: For the treatment of AVCF, the clinical efficacy of both surgical approaches is basically the same. The distribution of cement is more symmetrical and uniformly diffused in the BPKP group, and the clinical efficacy VAS score is lower in the long-term follow-up. Bipedicular percutaneous kyphoplasty is recommended for the treatment of AVCF. THE ETHICAL REVIEW BATCH NUMBER: XZXY-LJ-20161208-047.
Assuntos
Fraturas por Compressão , Cifoplastia , Fraturas da Coluna Vertebral , Humanos , Fraturas por Compressão/cirurgia , Estudos de Casos e Controles , Cimentos Ósseos/uso terapêutico , Estudos Retrospectivos , Fraturas da Coluna Vertebral/cirurgiaRESUMO
Cell enrichment is a powerful tool in many kinds of cell research, especially in applications with low abundance cell types. In this work, we developed a microfluidic fluorescence activated cell sorting device that was able to perform on-demand, low loss cell detection, and sorting. The chip utilizes three-dimensional acoustic standing waves to position all cells in the same fluid velocity regime without sheath. When the cells pass through a laser interrogation region, the scattering and fluorescent signals are detected, translated and transported to software. The target cells are then identified by gating on the plots. Short bursts of standing acoustic waves are triggered by order from PC to sort target cells within predefined gating region. For very low abundance and rare labeled lymphocytes mixed with high concentration unlabeled white blood cells (WBCs), (1-100 labeled lymphocytes are diluted in 106 WBCs in 1 ml volume fluid), the device is able to remove more than 98% WBCs and recover labeled lymphocytes with efficiency of 80%. We further demonstrated that this device worked with real clinical samples by successfully isolating fetal nucleated red blood cells (FNRBCs) in the blood samples from pregnant women with male fetus. The obtained cells were sequenced and the expressions of (sex determining region Y) SRY genes were tested to determine fetal cell proportion. In genetic analysis, the proportion of fetal cells in the final picked sample is up to 40.64%. With this ability, the device proposed could be valuable for biomedical applications involving fetal cells, circulating tumor cells, and stem cells.
Assuntos
Acústica , Técnicas Analíticas Microfluídicas , Separação Celular , Feminino , Citometria de Fluxo/métodos , Humanos , Dispositivos Lab-On-A-Chip , Leucócitos , Masculino , Técnicas Analíticas Microfluídicas/métodos , GravidezRESUMO
BACKGROUND: Selenium (Se) is a needed trace element for animals and humans. Many fungi have effective mechanisms to acquire, transform and accumulate Se in organic form. In this study, the effects of inorganic Se (sodium selenite) on the medicinal fungus Inonotus hispidus was investigated. RESULTS: Inonotus hispidus was capable of tolerating up to 3.85 mmol L-1 selenite, at which ~85% growth inhibition was seen, with 50% growth inhibition occurring at ~1 mmol L-1 selenite. Growth in 0.29 mmol L-1 Se resulted in I. hispidus mycelium with 115 times higher Se levels compared to growth in standard media, and an organic Se content of 86% to total Se content. The influence of Se accumulation on morphological features of I. hispidus were examined by microscopic and scanning electron microscopic observation. These data revealed significant shrinkage and deformations of I. hispidus hyphae with decreased branching and collapse of clamp connections under higher Se stress. However, conidial production in I. hispidus increased dramatically. The influence of Se on mycelial growth could be recovered by reinoculation in standard media. Se accumulation had only minimal impacts on the yield of the potential selenocompounds such as amino acids, proteins and polysaccharides. By contrast, Se-enriched I. hispidus mycelium was of higher quality due to reduction in crude fat and total ash contents. CONCLUSIONS: These data provide basic and applied information on the feasibility of producing selenized I. hispidus as an enriched and better quality product. © 2021 Society of Chemical Industry.
Assuntos
Selênio , Fungos/metabolismo , Inonotus , Micélio , Selênio/análise , Selenito de Sódio/metabolismoRESUMO
OBJECTIVE: To analyze the clinical phenotype and genetic variant in a Chinese pedigree affected with benign familial neonatal convulsion (BFNC). METHODS: Clinical data and peripheral blood samples of the pedigree were obtained with informed consent. Whole exome sequencing (WES) was carried out for the proband. Candidate variants were verified by Sanger sequencing. RESULTS: The pedigree comprised 9 individuals, among whom 4 were affected, including 3 males and 1 female. All patients had developed seizures during the neonatal period, which had ceased in 4 to 6 months. One patient had recurrence in between 1 and 2 years old. Genetic testing has identified a novel nonsense c.810G>A (p.W270X) variant in exon 5 of the KCNQ2 gene, which has co-separated with the BFNC phenotype in the pedigree. CONCLUSION: The patients from this pedigree have conformed to the diagnosis of BFNC with good prognosis, which was in keeping with previously reported cases. The heterozygous c.810G>A (p.W270X) nonsense variant of the KCNQ2 gene probably underlay the pathogenesis of BFNC in this pedigree, which has expanded the mutational spectrum of the disease.
Assuntos
Epilepsia Neonatal Benigna , Povo Asiático/genética , Pré-Escolar , China , Epilepsia Neonatal Benigna/genética , Feminino , Testes Genéticos , Humanos , Lactente , Masculino , Mutação , LinhagemRESUMO
The main challenge for constrained many-objective optimization problems (CMaOPs) is how to achieve a balance between feasible and infeasible solutions. Most of the existing constrained many-objective evolutionary algorithms (CMaOEAs) are feasibility-driven, neglecting the maintenance of population convergence and diversity when dealing with conflicting objectives and constraints. This might lead to the population being stuck at some locally optimal or locally feasible regions. To alleviate the above challenges, we proposed a dual-population-based NSGA-III, named DP-NSGA-III, where the two populations exchange information through the offspring. The main population based on the NSGA-III solves CMaOPs and the auxiliary populations with different environment selection ignore the constraints. In addition, we designed an ε-constraint handling method in combination with NSGA-III, aiming to exploit the excellent infeasible solutions in the main population. The proposed DP-NSGA-III is compared with four state-of-the-art CMaOEAs on a series of benchmark problems. The experimental results show that the proposed evolutionary algorithm is highly competitive in solving CMaOPs.
RESUMO
Prognosis for patients with recurrent and/or metastatic head and neck squamous cell carcinoma (HNSCC) remains poor. Development of more effective and less toxic targeted therapies is necessary for HNSCC patients. Checkpoint kinase 1 (CHK1) plays a vital role in cell cycle regulation and is a promising therapeutic target in HNSCC. Prexasertib, a CHK1 inhibitor, induces DNA damage and cell death, however, its effect on the tumor immune microenvironment (TIME) is largely unknown. Therefore, we evaluated a short-term and long-term effects of prexasertib in HNSCC and its TIME. Prexasertib caused increased DNA damage and cell death in vitro and significant tumor regression and improved survival in vivo. The gene expression and multiplex immunohistochemistry (mIHC) analyses of the in vivo tumors demonstrated increased expression of genes that are related to T-cell activation and increased immune cell trafficking, and decreased expression of genes that related to immunosuppression. However, increased expression of genes related to immunosuppression emerged over time suggesting evasion of immune surveillances. These findings in gene expression analyses were confirmed using mIHC which showed differential modulation of TIME in the tumor margins and as well as cores over time. These results suggest that evasion of immune surveillance, at least in part, may contribute to the acquired resistance to prexasertib in HNSCC.
Assuntos
Carcinoma de Células Escamosas/prevenção & controle , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço/prevenção & controle , Pirazinas/farmacologia , Pirazóis/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/farmacologia , Análise de Sobrevida , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologiaRESUMO
In recent years, microflow cytometry has become a popular research field because of its potential to provide low-cost and disposable chips for complex cell analyses. Herein, we demonstrate a sheathless microflow cytometer which integrates a bulk standing acoustic wave based microchip capable of three dimensional cell focusing. Flow cytometry was successfully demonstrated using this system with a coefficient of variation (CV) of 2.16% with standard calibration beads. The sensitivities calibrated by rainbow beads are 518 MEFL in fluorescein Isothiocyanate (FITC) channel and 264 MEPE in P-phycoerythrin (PE) channels, respectively. The linearities are more than 99% in both channels. The capability of the proposed microflow cytometer is further demonstrated by immunologically labeled leukocytes differentiation in blood. This acoustic-based microflow cytometer did not require any sheath flows or complex structures and can be mass produced. Because of the simple fluid channel, the chip can be easily made pipeless, disposable for applications requiring no cross contamination. Moreover, with the gentle and bio-compatible acoustic waves used, this technique is expected to maintain the viability of cells and other bioparticles.
Assuntos
Som , Citometria de FluxoRESUMO
A high-performance interdigitated electrode (IDE) biosensing surface was reported here by utilizing self-assembled silica nanoparticle (SiNP). The modified surface was used to evaluate the complementation of hairpin forming region from Mitoxantrone resistance gene 7 (MXR7; liver cancer-related short gene). The conjugated SiNPs on 3-aminopropyl triethoxysilane functionalization were captured with probe sequence on IDE biosensing surface. The physical and chemically modified surface was used to quantify MXR7 and an increment in the current response upon complementation was noticed. Limit of target DNA detection was calculated (1-10 fM) and this label-free detection is at the comparable level to the fluorescent-based sensing. A linear regression was calculated [y = 0.243x - 0.0773; R² = 0.9336] and the sensitivity was 1 fM on the linear range of 1 fM to 10 pM. With the strong attachment of capture DNA on IDE through SiNP, the surface clearly discriminates the specificity (complementary) versus nonspecificity (complete-, single-, and triple-mismatched sequences). This detection strategy helps to determine liver cancer progression and the similar strategy can be followed for other gene sequence complementation.
Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/genética , Nanopartículas/química , Análise de Sequência de DNA , Dióxido de Silício/química , Técnicas Eletroquímicas , Eletrodos , Glipicanas/genética , Humanos , Neoplasias Hepáticas/diagnóstico , Propriedades de SuperfícieRESUMO
BACKGROUND: In comparison with traditional therapeutics, it is highly preferable to develop a combinatorial therapeutic modality for nanomedicine and photothermal hyperthermia to achieve safe, efficient, and localized delivery of chemotherapeutic drugs into tumor tissues and exert tumor-activated nanotherapy. Biocompatible organic-inorganic hybrid hollow mesoporous organosilica nanoparticles (HMONs) have shown high performance in molecular imaging and drug delivery as compared to other inorganic nanosystems. Disulfiram (DSF), an alcohol-abuse drug, can act as a chemotherapeutic agent according to its recently reported effectiveness for cancer chemotherapy, whose activity strongly depends on copper ions. RESULTS: In this work, a therapeutic construction with high biosafety and efficiency was proposed and developed for synergistic tumor-activated and photothermal-augmented chemotherapy in breast tumor eradication both in vitro and in vivo. The proposed strategy is based on the employment of HMONs to integrate ultrasmall photothermal CuS particles onto the surface of the organosilica and the molecular drug DSF inside the mesopores and hollow interior. The ultrasmall CuS acted as both photothermal agent under near-infrared (NIR) irradiation for photonic tumor hyperthermia and Cu2+ self-supplier in an acidic tumor microenvironment to activate the nontoxic DSF drug into a highly toxic diethyldithiocarbamate (DTC)-copper complex for enhanced DSF chemotherapy, which effectively achieved a remarkable synergistic in-situ anticancer outcome with minimal side effects. CONCLUSION: This work provides a representative paradigm on the engineering of combinatorial therapeutic nanomedicine with both exogenous response for photonic tumor ablation and endogenous tumor microenvironment-responsive in-situ toxicity activation of a molecular drug (DSF) for augmented tumor chemotherapy.
Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Tratamento Farmacológico/métodos , Nanomedicina , Nanopartículas/uso terapêutico , Terapia Fototérmica/métodos , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cobre , Dissulfiram/farmacologia , Ditiocarb , Feminino , Camundongos Endogâmicos BALB C , Camundongos Nus , Tamanho da Partícula , Fototerapia , Microambiente Tumoral/efeitos dos fármacosRESUMO
piRNA-823 as a member of the piRNA family is reported to promote tumour cell proliferation in multiple myeloma and hepatocellular cancer. However, few studies on the function of piRNA-823 in colorectal cancer (CRC). Our present study data showed that piRNA-823 plays an oncogene role in CRC cells. Inhibition of piRNA-823 can significantly inhibit the proliferation, invasion and apoptosis resistance of CRC cells. Mechanism studies have shown that piRNA-823 inhibits the ubiquitination of hypoxia-inducible factor-1 alpha (HIF-1α) by up-regulating the expression of Glucose-6-phosphate dehydrogenase (G6PD) and ultimately up-regulates the glucose consumption of carcinoma cells and inhibits the content of intracellular reactive oxygen species (ROS). Therefore, we speculate piRNA-823 promotes the proliferation, invasion and apoptosis resistance of CRC cells by regulating G6PD/HIF-1α pathway. In this study, we set up the cancer-promoting function recovery experiment of piRNA-823 by silencing G6PD gene to confirm the dominance of the above-mentioned pathways. Using clinical samples, we found that overexpression of piRNA-823 correlated with poor overall survival and predicted a poor response to adjuvant chemotherapy of patients with CRC. In a word, our research has further enriched the theory of piRNA-823 promoting the progression of CRC, and laid a solid foundation for the development of piRNA-823-based gene therapy for CRC and its use as a promising prognostic biomarker in CRC patients.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Oncogenes/genética , RNA Interferente Pequeno/genética , Apoptose/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Regulação para Cima/genéticaRESUMO
Hepatitis B virus (HBV) is a major risk factor for the development and progression of hepatocellular carcinoma. It has been reported that viral infection can interfere with cellular microRNA (miRNA) expression and participate in the pathogenesis of oncogenicity. Here, we report that decreasing levels of the expression of the miRNA miR-192-3p is associated with rising levels of HBV DNA in the serum of HBV patients. We revealed that HBV infection repressed the expression of miR-192-3p through hepatitis B x protein interaction with c-myc. We further showed that miR-192-3p was repressed by HBV transfection in vitro and in a mouse model, leading to cellular autophagy. Using an miRNA target prediction database miRBase, we identified X-linked inhibitor of apoptosis protein (XIAP) as a target gene of miR-192-3p and demonstrated that miR-192-3p directly targeted the XIAP 3'-untranslated region of XIAP messenger RNA. Importantly, we discovered that HBV promoted autophagy through miR-192-3p-XIAP axis and that this process was important for HBV replication in vitro and in vivo. We demonstrated that miR-192-3p functioned through the nuclear factor kappa B signaling pathway to inhibit autophagy, thereby reducing HBV replication. Conclusions: Our findings indicate that miR-192-3p is a regulator of HBV infection and may play a potential role in hepatocellular carcinoma. It may also serve as a biomarker or therapeutic target for HBV patients.
Assuntos
Autofagia/fisiologia , Vírus da Hepatite B/fisiologia , Proteínas Inibidoras de Apoptose/fisiologia , MicroRNAs/fisiologia , NF-kappa B/fisiologia , Transdução de Sinais , Replicação Viral , Animais , Células Cultivadas , CamundongosRESUMO
Hepatocellular carcinoma (HCC) is a common cancer with poor prognosis. Hepatitis B virus (HBV) is one of the leading causes of HCC, but the precise mechanisms by which this infection promotes cancer development are not fully understood. Recently, miR-340-5p, a microRNA (miRNA) that has been identified as a cancer suppressor gene, was found to inhibit the migration and invasion of liver cancer cells. However, the effect of miR-340-5p on cell proliferation and apoptosis in HBV-associated HCC remains unknown. In our study, we show that miR-340-5p plays an important role during HBV infection and hepatocellular carcinoma development. Specifically, this miRNA directly binds to the mRNA encoding activating transcription factor 7 (ATF7), a protein that both promotes cell proliferation and suppresses apoptosis through its interaction with heat shock protein A member 1B (HSPA1B). We further found that miR-340-5p is downregulated by HBV, which enhances ATF7 expression, leading to enhanced cell proliferation and inhibition of apoptosis. Notably, ATF7 is upregulated in HCC tissue, suggesting that HBV may target miR-340-5p in vivo to promote ATF7/HSPA1B-mediated proliferation and apoptosis and regulate liver cancer progression. This work helps to elucidate the complex interactions between HBV and host miRNAs and further suggests that miR-340-5p may represent a promising candidate for the development of improved therapeutic strategies for HCC.
Assuntos
Fatores Ativadores da Transcrição/genética , Carcinoma Hepatocelular/virologia , Proteínas de Choque Térmico HSP70/genética , Hepatite B/genética , Neoplasias Hepáticas/virologia , MicroRNAs/genética , Fatores Ativadores da Transcrição/metabolismo , Apoptose , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP70/metabolismo , Células Hep G2 , Hepatite B/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismoRESUMO
Cutaneous wounds caused by an exposure to high doses of ionizing radiation remain a therapeutic challenge. While new experimental strategies for treatment are being developed, there are currently no off-the-shelf therapies for the treatment of cutaneous radiation injury that have been proven to promote repair of the damaged tissues. Plasma-based biomaterials are biologically active biomaterials made from platelet enriched plasma, which can be made into both solid and semi-solid forms, are inexpensive, and are available as off-the-shelf, nonrefrigerated products. In this study, the use of plasma-based biomaterials for the mitigation of acute and late toxicity for cutaneous radiation injury was investigated using a mouse model. A 2-cm diameter circle of the dorsal skin was irradiated with a single dose of 35 Gy followed by topical treatment with plasma-based biomaterial or vehicle once daily for 5 weeks postirradiation. Weekly imaging demonstrated more complete wound resolution in the plasma-based biomaterial vs. vehicle group which became statistically significant (p < 0.05) at weeks 12, 13, and 14 postmaximum wound area. Despite more complete wound healing, at 9 and 17 weeks postirradiation, there was no statistically significant difference in collagen deposition or skin thickness between the plasma-based biomaterial and vehicle groups based on Masson trichrome staining nor was there a statistically significant difference in inflammatory or fibrosis-related gene expression between the groups. Although significant improvement was not observed for late toxicity, plasma-based biomaterials were effective at promoting wound closure, thus helping to mitigate acute toxicity.
Assuntos
Materiais Biocompatíveis/uso terapêutico , Plasma Rico em Plaquetas , Lesões por Radiação/patologia , Lesões por Radiação/terapia , Pele/patologia , Animais , Materiais Biocompatíveis/farmacologia , Análise Custo-Benefício , Modelos Animais de Doenças , Masculino , Camundongos , CicatrizaçãoRESUMO
Cross-coupling of organoboron compounds with electrophiles (Suzuki-Miyaura reaction) has greatly advanced C-C bond formation and has been well received in medicinal chemistry. During the past 50 years, transition metals have played a central role throughout the catalytic cycle of this important transformation. In this process, chemoselectivity among multiple carbon-halogen bonds is a common challenge. In particular, selective oxidative addition of transition metals to alkyl halides rather than aryl halides is difficult due to unfavorable transition states and bond strengths. We describe a new approach that uses a single organic sulfide catalyst to activate both C(sp3) halides and arylboronic acids via a zwitterionic boron "ate" intermediate. This "ate" species undergoes a 1,2-metalate shift to afford Suzuki coupling products using benzyl chlorides and arylboronic acids. Various diaryl methane analogues can be prepared, including those with complex and biologically active motifs. The reactions proceed under transition-metal-free conditions, and C(sp2) halides, including aryl bromides and iodides, are unaffected. The orthogonal chemoselectivity is demonstrated in the streamlined synthesis of highly functionalized diaryl methane scaffolds using multi-halogenated substrates. Preliminary mechanistic experiments suggest both the sulfonium salt and the sulfur ylide are involved in the reaction, with the formation of sulfonium salt being the slowest step in the overall catalytic cycle.
RESUMO
OBJECTIVE: Selective and non-selective methods for caries removal were controversial so far, thus we aimed to compare the efficacy of selective and non-selective caries removal by conducting meta-analysis of randomized controlled trials (RCTs). MATERIALS AND METHODS: Eligible RCTs studies comparing selective caries removal with non-selective caries removal were retrieved by searching PubMed, EMBASE and Cochrane Library till 15 July 2017. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated for outcome indictors, including pulpal exposure, pulpal symptoms and failure using Inverse variance-random effects or Mantel-Haenszel-fixed effects models. RESULTS: Totally, seven studies were eligible for the meta-analysis. Compared with the non-selective caries removal group, the risk of pulpal exposure was significantly reduced in the selective caries removal group (OR = 0.11, 95% CI: 0.04-0.30). No significant difference was observed in pulpal symptoms (OR = 0.79, 95% CI: 0.30-2.12) and failure (OR = 1.40, 95% CI: 0.69-2.84) between the groups. CONCLUSIONS: The efficacy of selective caries removal appears comparable to that of non-selective caries removal in children, with similar pulpal symptoms and failure, but selective caries removal may result in a low incidence of pulpal exposure. However, larger-scale RCTs with long-term follow-up are required to confirm this conclusion.
Assuntos
Cariostáticos/uso terapêutico , Tratamento Dentário Restaurador sem Trauma/métodos , Assistência Odontológica/métodos , Cárie Dentária/terapia , Criança , Polpa Dentária , Feminino , Humanos , Razão de ChancesRESUMO
Here we propose a new method for trapping the resonant metallic particles with the 4π tight focusing (high numerical-aperture (NA)) system, which is illuminated by radial polarization light. Numerical simulations have indicated the maximum total optical force is 16.1pN while with nearly zero scattering force under axis trapping, which keeps the gradient force predominant. Furthermore, the distribution of total force is centrosymmetric and odd. We also gain stable 3D trap with an equilibrium point along z axis and r axis as in normal optical tweezers. What's more, we obtain the nearly pure longitudinal field. The maximum transverse intensity is only 2.3 × 10-3 and the transverse spot size reaches 0.36λ, which is below Abbe's diffraction limit.