Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(2)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963321

RESUMO

Corn straw is an agricultural waste. The system for extracting cellulose from corn straw at a high temperature has been widely reported by researchers. However, the system for extracting cellulose from corn straw at a low temperature has been rarely reported. In this paper, a new system for extracting cellulose from corn straw at a low temperature was reported for the first time. This new system is designated as the low temperature laccase system (LTLS). Cellulose was successfully extracted from corn straw by the LTLS, and the used solution could be recycled. Therefore, the low temperature laccase system is an environmentally-friendly system. The cellulose content in corn straw is 30-40%. The yield of cellulose extracted by LTLS was 33%. The obtained cellulose product was creamy white. The extracted cellulose samples were characterized by using infrared spectroscopy (IR), thermogravimetry (TG), and X-ray diffraction (XRD). The results were consistent with that of standard cellulose. We confirmed that the LTLS extracted cellulose from corn straw with high purity.

2.
J Environ Sci (China) ; 150: 149-158, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306392

RESUMO

Acid-base dissociable antibiotic-metal complexes are known to be emerging contaminants in the aquatic environments. However, little information is available on the photochemical properties and toxicity of these complex forms. This study investigated the spectral properties of three fluoroquinolones (FQs) with and without metal ions Fe(III), Cu(II), and Al(III) in solutions under different pH conditions, as well as evaluated the changes in toxicity due to the complex with these metal ions using luminescent bacteria (vibrio fischeri). FQs showed a higher tendency to coordinate metal ions under alkaline conditions compared to neutral and acidic conditions, and the formation of complexes weakened the ultraviolet-absorbing ability of FQs. At pH = 7.0, Cu(II) quenched the fluorescence intensity of FQs. Moreover, their Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy were explored, revealing that the coordination sites of Cu(II) in three FQs were situated in a bidentate manner through the oxygen atom of the deprotonated carboxyl group and cyclic carbonyl oxygen atom. This conclusion was further verified by the theory of molecular surface electrostatic potential. In addition, except for complexes of ciprofloxacin-metals, enhanced toxicity of FQs upon coordination with Fe(III) was observed, while reduced toxicity was found for coordination with Cu(II) and Al(III). These results are important for accurately evaluating the photochemical behavior and risk of these antibiotics in aquatic environments contaminated with metal ions.


Assuntos
Antibacterianos , Fluoroquinolonas , Poluentes Químicos da Água , Fluoroquinolonas/química , Fluoroquinolonas/toxicidade , Antibacterianos/química , Antibacterianos/toxicidade , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Metais/química , Metais/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA