Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Eur J Appl Physiol ; 124(8): 2503-2510, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38568258

RESUMO

PURPOSE: The literature predominantly addresses cross-education of strength in the dominant limb rather than the non-dominant limb, guided by the hypothesis of an asymmetrical transfer of strength from unilateral training protocols. The purpose of the study was to review the literature and determine how much evidence was available to support this claim. A meta-analysis was performed to estimate the magnitude of this hypothesized asymmetrical transfer of strength. METHODS: A literature search of all possible records was implemented using Cochrane Library, PubMed, and Scopus from February 2022 to May 2022. Comparison of randomized controlled trials was computed. The change scores and standard deviations of those change scores were extracted for each group. Only three studies met the criteria, from which a total of five effect sizes were extracted and further analyzed. RESULTS: The overall effect of resistance training of the dominant limb on strength transfer to the non-dominant limb relative to the effects of resistance training the non-dominant limb on strength transfer to the dominant (non-training) limb was 0.46 (SE 0.42). The analysis from this study resulted in minimal support for the asymmetry hypothesis. Given the small number of studies available, we provide the effect but note that the estimate is unlikely to be stable. CONCLUSION: Although it is repeatedly stated that there is an asymmetrical transfer of strength, our results find little support for that claim. This is not to say that it does not exist, but additional research implementing a control group and a direct comparison between limbs is needed to better understand this question.


Assuntos
Força Muscular , Treinamento Resistido , Humanos , Treinamento Resistido/métodos , Força Muscular/fisiologia , Lateralidade Funcional/fisiologia , Músculo Esquelético/fisiologia
2.
Eur J Appl Physiol ; 124(5): 1575-1585, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38168713

RESUMO

INTRODUCTION: The application of blood flow restriction (BFR) to low-intensity exercise may be able to increase strength not only in the trained limb but also in the homologous untrained limb. Whether this effect is repeatable and how that change compares to that observed with higher intensity exercise is unknown. PURPOSE: Examine whether low-intensity training with BFR enhances the cross-education of strength compared to exercise without BFR and maximal efforts. METHODS: A total of 179 participants completed the 6-week study, with 135 individuals performing isometric handgrip training over 18 sessions. Participants were randomly assigned to one of four groups: 1) low-intensity (4 × 2 min of 30% MVC; LI, n = 47), 2) low-intensity with blood flow restriction (LI + 50% arterial occlusion pressure; LI-BFR, n = 41), 3) maximal effort (4 × 5 s of 100% MVC; MAX, n = 47), and 4) non-exercise control (CON, n = 44). RESULTS: LI-BFR was the only group that observed a cross-education in strength (CON: 0.64 SD 2.9 kg, LI: 0.95 SD 3.6 kg, BFR-LI: 2.7 SD 3.3 kg, MAX: 0.80 SD 3.1 kg). In the trained hand, MAX observed the greatest change in strength (4.8 SD 3.3 kg) followed by LI-BFR (2.8 SD 4.0 kg). LI was not different from CON. Muscle thickness did not change in the untrained arm, but ulna muscle thickness was increased within the trained arm of the LI-BFR group (0.06 SD 0.11 cm). CONCLUSION: Incorporating BFR into low-intensity isometric training led to a cross-education effect on strength that was greater than all other groups (including high-intensity training).


Assuntos
Força da Mão , Contração Isométrica , Músculo Esquelético , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Exercício Físico/fisiologia , Força da Mão/fisiologia , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/irrigação sanguínea , Fluxo Sanguíneo Regional/fisiologia , Treinamento Resistido/métodos
3.
J Sports Sci ; 42(14): 1308-1312, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39115420

RESUMO

It was previously hypothesized that the cross-education of strength is asymmetrical, where a greater transfer of strength is observed from the dominant to the non-dominant limb. The purpose of this study was to examine if the magnitude of cross-education of strength differed between dominant and non-dominant limbs following unilateral high-load resistance training. One hundred and twenty-two participants were randomized to one of the three groups: 1) training on the dominant arm (D-Only), 2) training on the non-dominant arm (ND-Only) and 3) a time-matched non-exercise control (Control). The training groups completed 6 weeks (18 sessions) of unilateral elbow flexion exercise. Each training session started with one-repetition maximum (1RM) training (≤ five attempts), followed by four sets of high-load exercise (i.e. 8-12RM). Strength changes of the untrained arm were compared between groups. Changes in the strength of the untrained arm were greater in D-Only (1.5 kg) and ND-Only (1.3 kg) compared to Control (-0.2 kg), without differences between D-Only and ND-Only. Unilateral resistance training increased strength in the opposite untrained arm, and the magnitude of this effect was similar regardless of which arm was trained. However, there is still considerable uncertainty on this topic and additional research is warranted to confirm the current findings.


Assuntos
Braço , Força Muscular , Treinamento Resistido , Humanos , Treinamento Resistido/métodos , Força Muscular/fisiologia , Braço/fisiologia , Masculino , Feminino , Adulto Jovem , Lateralidade Funcional/fisiologia , Adulto
4.
J Sports Sci ; 42(1): 73-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38412241

RESUMO

We sought to determine the effects of blood flow restriction (BFR) on exercise-induced hypoalgesia, specifically using low-load (LL) resistance exercise (30% 1RM) protocols that accounted for each individual's local muscular endurance capabilities. Forty-four participants completed four conditions: (1) 70% of maximal BFR repetitions with blood flow restriction (LL+BFR exercise); (2) 70% maximal BFR repetitions without LL+BFR (LL exercise); (3) 70% maximal free flow repetitions (LL+EFFORT exercise); (4) time-matched, non-exercise control (CON). Pressure pain threshold (PPT) was measured before and after exercise. Ischaemic pain threshold and tolerance was assessed only at post. The change in upper body PPT was greater for LL+BFR exercise compared to LL exercise [difference of 0.15 (0.35) kg/cm2], LL+EFFORT exercise [difference of 0.23 (0.45) kg/cm2], and the CON condition. The change in lower body PPT was greater for LL+BFR exercise compared to LL exercise [difference of 0.40 (0.55) kg/cm2], LL+EFFORT exercise [difference of 0.36 (0.62) kg/cm2], and the CON condition. Ischaemic pain thresholds and tolerances did not change. Submaximal exercise with BFR resulted in systemic increases in PPT but had no influence on ischaemic pain sensitivity. This effect is likely unique to BFR as we did not see changes in the effort matched free flow condition.


Assuntos
Limiar da Dor , Treinamento Resistido , Humanos , Fluxo Sanguíneo Regional/fisiologia , Hemodinâmica , Dor , Exercício Físico/fisiologia , Treinamento Resistido/métodos , Músculo Esquelético/fisiologia
5.
J Strength Cond Res ; 38(8): 1413-1418, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39072655

RESUMO

ABSTRACT: Song, JS, Hammert, WB, Kataoka, R, Yamada, Y, Kang, A, and Loenneke, JP. Individuals can be taught to sense the degree of vascular occlusion: Implications for practical blood flow restriction. J Strength Cond Res 38(8): 1413-1418, 2024-It is currently unknown if individuals can be conditioned to a relative arterial occlusion pressure (AOP) and replicate that pressure at a later time point. The purpose of this study was to determine whether individuals can be taught to sense a certain relative pressure (i.e., target pressure) by comparing a conditioning method with a time-matched non-conditioning control. Fifty-eight subjects completed 2 visits in a randomized order: (a) conditioning condition and (b) time-matched control condition. The conditioning involved 11 series of inflations to 40% AOP for 12 seconds followed by cuff deflation for 22 seconds. The pressure estimations were taken at 5 and 30 minutes after each condition. Data are presented as mean differences (95% credible interval). The absolute error at 5 minutes was greater for the control compared with conditioning condition (7.1 [2.0-12.1] mm Hg). However, this difference in absolute error between conditioning and control was reduced at 30 minutes (2.9 [-1.3 to 7.1] mm Hg). The mean difference and 95% limits of agreement for the control were 8.2 (-42.4 to 58.5) mm Hg at 5 minutes and 0.02 (-43.5 to 43.5) at 30 minutes. The agreements for the conditioning were -6.2 (-32.4 to 20.0) mm Hg at 5 minutes and -11.2 (-36.6 to 14.3) mm Hg at 30 minutes. The results suggest that the individuals can be taught to sense the target pressure, but this effect only lasts a short amount of time. Future work is necessary to refine the conditioning method to extend the duration of this conditioning effect.


Assuntos
Fluxo Sanguíneo Regional , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Fluxo Sanguíneo Regional/fisiologia , Pressão Sanguínea/fisiologia
6.
J Strength Cond Res ; 38(5): 864-872, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38170759

RESUMO

ABSTRACT: Kataoka, R, Song, JS, Yamada, Y, Hammert, WB, Seffrin, A, Spitz, RW, Wong, V, Kang, A, and Loenneke, JP. The impact of different ischemic preconditioning pressures on pain sensitivity and resistance exercise performance. J Strength Cond Res 38(5): 864-872, 2024-To determine (a) the impact of ischemic preconditioning pressures (applied as a % of arterial occlusion pressure [AOP]) on pressure pain threshold (PPT) and resistance exercise performance and (b) whether changes in performance could be explained by changes in PPT. Subjects ( n = 39) completed 4 protocols in a randomized order: (a) ischemic preconditioning (IPC) at 110% AOP (IPC 110%), (b) IPC at 150% AOP (IPC 150%), (c) IPC at 10% AOP (Sham), and (d) time-matched control (CON). Each protocol included 4 cycles of 5 minutes of occlusion followed by 5 minutes of reperfusion. Pressure pain threshold was taken before and after. Discomfort ratings were given at the end of each cycle. Every visit finished with 2 sets of 75-second maximal isokinetic unilateral elbow flexion or extension. Overall, IPC 110% and IPC 150% resulted in similar increases in PPT relative to CON [110%: difference of 0.36 (0.18, 0.54) kg·m -2 ; 150%: difference of 0.377 (0.15, 0.59) kg·m -2 ] and Sham. Both resulted in greater discomfort than Sham and CON, with IPC 150% inducing greater discomfort than IPC 110% (BF 10 : 14.74). There were no differences between the conditions for total work (BF 10 : 0.23), peak torque (BF 10 : 0.035), or average power (BF 10 : 0.159). We did not find evidence that PPT mediated performance. We did not detect changes in performance with 2 different relative pressures greater than AOP. Our mean applied pressures were lower than those used previously. There might be a minimal level of pressure (e.g., >150% of AOP) that is required to induce ergogenic effects of ischemic preconditioning.


Assuntos
Precondicionamento Isquêmico , Limiar da Dor , Treinamento Resistido , Humanos , Limiar da Dor/fisiologia , Precondicionamento Isquêmico/métodos , Treinamento Resistido/métodos , Masculino , Adulto Jovem , Adulto , Feminino , Pressão , Desempenho Atlético/fisiologia
7.
Am J Hum Biol ; 35(5): e23862, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36610023

RESUMO

OBJECTIVES: Concerns have been raised against the current two-sex binary category in sports competitions. The thesis states that if males and females were separated based on muscle size, it would negate the strength advantage between the sexes. We tested the possible sex differences in various strength outcomes when pair-matched for muscle thickness. METHODS: A total of 16 different data sets (n = 963) were assessed to pair-match females with males who had a muscle thickness value within 2%. We further compared the competition performances of the smallest male weight class within the International Powerlifting Federation (IPF) to different weight classes in females. RESULTS: Overall, 76%-88% of the strength assessments were greater in males than females with pair-matched muscle thickness, regardless of contraction types (i.e., isotonic, isometric, isokinetic). Additionally, males in the lightest weight division in the IPF largely outperformed females in heavier weight divisions. CONCLUSIONS: Our results would suggest that segregation based on muscle mass or surrogates of muscle mass (e.g., lean body mass) might not be an appropriate classification to create fair competition within strength sports. This is not to refute the concept of the desegregation of the two-sex binary category but to present data that raises important concerns about the potential sex-based differences in strength performance.


Assuntos
Força Muscular , Esportes , Humanos , Masculino , Feminino , Força Muscular/fisiologia , Contração Isométrica/fisiologia , Músculos , Músculo Esquelético/fisiologia
8.
Eur J Appl Physiol ; 123(5): 937-943, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36580110

RESUMO

Blood flow restriction pressures are typically set as a percentage of the arterial occlusion pressure. For those who do not have the ability to measure the arterial occlusion pressure, estimation equations are available. However, notable considerations are needed when estimating pressure with a narrow cuff (5 cm) in the lower body. A previously published equation in this journal was developed but was created only using 55% of the sample because the arterial occlusion of the others could not be obtained within the manufacturer's pressure limit. The purpose of this article was twofold: (1) to investigate how previous studies have implemented the equation and (2) to highlight potential concerns of using this equation. Two databases were used to locate articles that used the equation from Loenneke et al. (2015). We found that this equation had been cited 10 times to estimate arterial occlusion pressure with some notable concerns. Some did not use a 5 cm wide cuff, while others used it for participants who had arterial occlusion pressures exceeding 300 mmHg. To highlight the latter, we also applied the Loenneke et al. (2015) lower body equation to participants with arterial occlusion pressures known to exceed 300 mmHg to demonstrate potential concerns. This retrospective analysis found that 52% of the sample with known pressures over 300 mmHg (40 out of 77) would be estimated below 300 mmHg. This paper highlighted important considerations for those trying to estimate arterial occlusion pressure in the lower body with a narrow cuff (5 cm).


Assuntos
Adaptação Fisiológica , Pressão Arterial , Terapia de Restrição de Fluxo Sanguíneo , Determinação da Pressão Arterial , Terapia de Restrição de Fluxo Sanguíneo/estatística & dados numéricos , Extremidade Inferior/irrigação sanguínea , Humanos , Pressão Arterial/fisiologia
9.
J Strength Cond Res ; 37(6): 1204-1210, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36727998

RESUMO

ABSTRACT: Kataoka, R, Song, JS, Bell, ZW, Wong, V, Spitz, RW, Yamada, Y, and Loenneke, JP. Effect of increased pressure pain threshold on resistance exercise performance with blood flow restriction. J Strength Cond Res 37(6): 1204-1210, 2023-This study aimed to examine whether increasing pressure pain threshold (PPT) through isometric handgrip exercise (HG) affects the number of repetitions completed and discomfort with knee extension exercise (KE) with blood flow restriction (BFR), and examine whether performing additional exercise leads to a further increase in PPT. Forty-one participants completed 2 trials: rest followed by low-load KE with BFR at 80% of resting arterial occlusion pressure (Rest + KE BFR) and low-intensity (30% of maximal strength) HG exercise followed by KE with BFR (HG + KE BFR). Pressure pain threshold was measured before and after exercise at the forearm and tibialis anterior. Results are presented as median difference (95% credible interval). Pressure pain threshold increased at the forearm (Bayes factor [BF 10 ]: 5.2 × 10 7 ) and tibialis anterior (BF 10 : 1.5 × 10 6 ) after HG exercise. However, this did not lead to greater repetitions being completed with BFR exercise (0.2 [-0.1, 0.6] repetitions, BF 10 : 0.07). Pressure pain threshold after BFR exercise was not augmented over that observed with HG exercise (0.02 [-0.15, 0.2] kg·cm -2 , BF 10 : 0.175) at the forearm. More data are needed in the lower body to determine which model best fits the data (BF 10 : 0.84). Discomfort with BFR exercise was not different between conditions (1.0 [-2.3, 4.4] arbitrary units, BF 10 : 0.10). The pain-reducing effect of prior exercise did not change the repetitions completed with BFR exercise, suggesting that the change in PPT may not have been great enough to alter performance. Performing additional exercise did not elicit further increases in PPT nor was perceived discomfort to BFR exercise altered by changes in PPT.


Assuntos
Limiar da Dor , Treinamento Resistido , Humanos , Treinamento Resistido/métodos , Teorema de Bayes , Força da Mão , Fluxo Sanguíneo Regional/fisiologia , Dor , Músculo Esquelético/fisiologia
10.
J Sports Sci ; 40(5): 518-526, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34823439

RESUMO

The purpose was to examine the effect of isometric handgrip exercise with and without blood flow restriction on exercise-induced hypoalgesia at a local and non-local site, and its underlying mechanisms. Sixty participants (21 males & 39 females, 18-35 years old) completed 3 trials: four sets of 2-minute isometric handgrip exercise at 30% of maximum handgrip strength; isometric handgrip exercise with blood flow restriction at 50% of arterial occlusion pressure; and a non-exercise time-matched control. Pain thresholds increased similarly in both exercise conditions at a local (exercise conditions: ~0.45 kg/cm2, control: ~-0.04 kg/cm2) and non-local site (exercise conditions: ~0.37 kg/cm2, control: ~-0.16 kg/cm2). Blood flow restriction induced greater feelings of discomfort compared to exercise alone [median difference (95% credible interval) of 4.5 (0.5, 8.6) arbitrary units]. Blood pressure increased immediately after exercise (systolic: 10.3 mmHg, diastolic: 7.7 mmHg) and decreased in recovery. There was no within participant correlation between changes in discomfort and pressure pain threshold. A bout of isometric handgrip exercise with or without blood flow restriction can provide exercise-induced hypoalgesia at a local and non-local site. However, discomfort and changes in systolic blood pressure do not explain this response.


Assuntos
Exercício Físico , Força da Mão , Adolescente , Adulto , Pressão Sanguínea/fisiologia , Exercício Físico/fisiologia , Feminino , Força da Mão/fisiologia , Hemodinâmica , Humanos , Contração Isométrica , Masculino , Limiar da Dor/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA