Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38834774

RESUMO

BACKGROUND: Adhesion G protein-coupled receptors (aGPCRs), a distinctive subset of the G protein-coupled receptor (GPCR) superfamily, play crucial roles in various physiological and pathological processes, with implications in tumor development. Despite the global prevalence of breast cancer (BRCA), specific aGPCRs as potential drug targets or biomarkers remain underexplored. METHODS: UALCAN, GEPIA, Kaplan-Meier Plotter, MethSurv, cBiopportal, String, GeneMANIA, DAVID, Timer, Metascape, and qPCR were applied in this work. RESULTS: Our analysis revealed significantly increased transcriptional levels of ADGRB2, ADGRC1, ADGRC2, ADGRC3, ADGRE1, ADGRF2, ADGRF4, and ADGRL1 in BRCA primary tumors. Further analysis indicated a significant correlation between the expressions of certain aGPCRs and the pathological stage of BRCA. High expression of ADGRA1, ADGRF2, ADGRF4, ADGRG1, ADGRG2, ADGRG4, ADGRG6, and ADGRG7 was significantly correlated with poor overall survival (OS) in BRCA patients. Additionally, high expression of ADGRF2 and ADGRF4 indicated inferior recurrence-free survival (RFS) in BRCA patients. The RT-qPCR experiments also confirmed that the mRNA levels of ADGRF2 and ADGRF4 were higher in BRCA cells and tissues. Functional analysis highlighted the diverse roles of aGPCRs, encompassing GPCR signaling and metabolic energy reserves. Moreover, aGPCRs may exert influence or actively participate in the development of BRCA through their impact on immune status. CONCLUSION: aGPCRs, particularly ADGRF2 and ADGRF4, hold promise as immunotherapeutic targets and prognostic biomarkers in BRCA.

2.
Transl Vis Sci Technol ; 8(6): 21, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31788350

RESUMO

PURPOSE: Detection of the huge amount of data generated in real-time visual evoked potential (VEP) requires labor-intensive work and experienced electrophysiologists. This study aims to build an automatic VEP classification system by using a deep learning algorithm. METHODS: Patients with sellar region tumor and optic chiasm compression were enrolled. Flash VEP monitoring was applied during surgical decompression. Sequential VEP images were fed into three neural network algorithms to train VEP classification models. RESULTS: We included 76 patients. During surgical decompression, we observed 68 eyes with increased VEP amplitude, 47 eyes with a transient decrease, and 37 eyes without change. We generated 2,843 sequences (39,802 images) in total (887 sequences with increasing VEP, 276 sequences with decreasing VEP, and 1680 sequences without change). The model combining convolutional and recurrent neural network had the highest accuracy (87.4%; 95% confidence interval, 84.2%-90.1%). The sensitivity of predicting no change VEP, increasing VEP, and decreasing VEP was 92.6%, 78.9%, and 83.7%, respectively. The specificity of predicting no change VEP, increasing VEP, and decreasing VEP was 80.5%, 93.3%, and 100.0%, respectively. The class activation map visualization technique showed that the P2-N3-P3 complex was important in determining the output. CONCLUSIONS: We identified three VEP responses (no change, increase, and decrease) during transsphenoidal surgical decompression of sellar region tumors. We developed a deep learning model to classify the sequential changes of intraoperative VEP. TRANSLATIONAL RELEVANCE: Our model may have the potential to be applied in real-time monitoring during surgical resection of sellar region tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA