Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Virol J ; 15(1): 62, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29615087

RESUMO

BACKGROUND: Iris yellow spot virus (IYSV) is an Orthotospovirus that infects most Allium species. Very few approaches for specific detection of IYSV from infected plants are available to date. We report the development of a high-sensitive Luminex xMAP-based microsphere immunoassay (MIA) for specific detection of IYSV. RESULTS: The nucleocapsid (N) gene of IYSV was cloned and expressed in Escherichia coli to produce the His-tagged recombinant N protein. A panel of monoclonal antibodies (MAbs) against IYSV was generated by immunizing the mice with recombinant N protein. Five specific MAbs (16D9, 11C6, 7F4, 12C10, and 14H12) were identified and used for developing the Luminex xMAP-based MIA systems along with a polyclonal antibody against IYSV. Comparative analyses of their sensitivity and specificity in detecting IYSV from infected tobacco leaves identified 7F4 as the best-performed MAb in MIA. We then optimized the working conditions of Luminex xMAP-based MIA in specific detection of IYSV from infected tobacco leaves by using appropriate blocking buffer and proper concentration of biotin-labeled antibodies as well as the suitable ratio between the antibodies and the streptavidin R-phycoerythrin (SA-RPE). Under the optimized conditions the Luminex xMAP-based MIA was able to specifically detect IYSV with much higher sensitivity than conventional enzyme-linked immunosorbent assay (ELISA). Importantly, the Luminex xMAP-based MIA is time-saving and the whole procedure could be completed within 2.5 h. CONCLUSIONS: We generated five specific MAbs against IYSV and developed the Luminex xMAP-based MIA method for specific detection of IYSV in plants. This assay provides a sensitive, high-specific, easy to perform and likely cost-effective approach for IYSV detection from infected plants, implicating potential broad usefulness of MIA in plant virus diagnosis.


Assuntos
Infecções por Bunyaviridae/diagnóstico , Infecções por Bunyaviridae/virologia , Imunoensaio , Medições Luminescentes , Microesferas , Doenças das Plantas/virologia , Tospovirus/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Feminino , Imunoensaio/métodos , Medições Luminescentes/métodos , Camundongos , Proteínas Recombinantes , Sensibilidade e Especificidade , Tospovirus/genética , Proteínas Virais/genética , Proteínas Virais/imunologia
2.
Comput Intell Neurosci ; 2022: 7773259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528358

RESUMO

Dealing with food safety issues in time through online public opinion incidents can reduce the impact of incidents and protect human health effectively. Therefore, by the smart technology of extracting the entity relationship of public opinion events in the food field, the knowledge graph of the food safety field is constructed to discover the relationship between food safety issues. To solve the problem of multi-entity relationships in food safety incident sentences for few-shot learning, this paper adopts the pipeline-type extraction method. Entity relationship is extracted from Bidirectional Encoder Representation from Transformers (BERTs) joined Bidirectional Long Short-Term Memory (BLSTM), namely, the BERT-BLSTM network model. Based on the entity relationship types extracted from the BERT-BLSTM model and the introduction of Chinese character features, an entity pair extraction model based on the BERT-BLSTM-conditional random field (CRF) is established. In this paper, several common deep neural network models are compared with the BERT-BLSTM-CRF model with a food public opinion events dataset. Experimental results show that the precision of the entity relationship extraction model based on BERT-BLSTM-CRF is 3.29%∼23.25% higher than that of other models in the food public opinion events dataset, which verifies the validity and rationality of the model proposed in this paper.


Assuntos
Idioma , Redes Neurais de Computação , Inocuidade dos Alimentos , Humanos , Memória de Longo Prazo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA