Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 228(1): 59-63, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-36958371

RESUMO

No treatment exists for mitochondrial dysfunction, a contributor to end-organ disease in human immunodeficiency virus (HIV). The mitochondrial antioxidant mitoquinone mesylate (MitoQ) attenuates mitochondrial dysfunction in preclinical mouse models of various diseases but has not been used in HIV. We used a humanized murine model of chronic HIV infection and polymerase chain reaction to show that HIV-1-infected mice treated with antiretroviral therapy and MitoQ for 90 days had higher ratios of human and murine mitochondrial to nuclear DNA in end organs compared with HIV-1-infected mice on antiretroviral therapy. We offer translational evidence of MitoQ as treatment for mitochondrial dysfunction in HIV.


Assuntos
DNA Mitocondrial , Infecções por HIV , Humanos , Camundongos , Animais , Modelos Animais de Doenças , DNA Mitocondrial/genética , Infecções por HIV/tratamento farmacológico , Compostos Organofosforados , Antioxidantes , Ubiquinona , Mitocôndrias
2.
J Virus Erad ; 9(4): 100354, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38161322

RESUMO

Functional cure, defined as durable loss of hepatitis B surface antigen (HBsAg) and hepatitis B virus (HBV) DNA suppression off therapy, is an increasingly important goal in the treatment of chronic hepatitis B. Although novel treatments aimed at achieving functional cure are being developed and tested in clinical trials, it is important to assess the perspectives of people living with HBV towards these potential treatments and their participation in HBV functional cure research. We have performed a scoping review that revealed that there is limited knowledge regarding patient perspectives of HBV functional cure research and then identified gaps in knowledge for further investigation. Our work highlights the need for further studies in patient perspectives in HBV functional cure research.

3.
Front Microbiol ; 13: 1111930, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713204

RESUMO

Coronaviruses can cause serious respiratory tract infections and may also impact other end organs such as the central nervous system, the lung and the heart. The coronavirus disease 2019 (COVID-19) has had a devastating impact on humanity. Understanding the mechanisms that contribute to the pathogenesis of coronavirus infections, will set the foundation for development of new treatments to attenuate the impact of infections with coronaviruses on host cells and tissues. During infection of host cells, coronaviruses trigger an imbalance between increased production of reactive oxygen species (ROS) and reduced antioxidant host responses that leads to increased redox stress. Subsequently, increased redox stress contributes to reduced antiviral host responses and increased virus-induced inflammation and apoptosis that ultimately drive cell and tissue damage and end organ disease. However, there is limited understanding how different coronaviruses including SARS-CoV-2, manipulate cellular machinery that drives redox responses. This review aims to elucidate the redox mechanisms involved in the replication of coronaviruses and associated inflammation, apoptotic pathways, autoimmunity, vascular dysfunction and tissue damage that collectively contribute to multiorgan damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA