Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38893438

RESUMO

In recent years, the efficient removal of organic pollutants from wastewater has emerged as a critical area of global research interest. Against this backdrop, an array of innovative technologies for wastewater treatment has been developed. Among numerous advanced oxidation processes (AOPs), periodate (PI), an emerging oxidizing agent in AOPs, has garnered significant attention from researchers. Particularly, the integration of ultrasound (US)-activated PI systems has been recognized as an exceptionally promising approach for the synergistic degradation of organic pollutants in wastewater. In this paper, we conducted a thorough analysis of the mechanisms underlying the degradation of organic pollutants using the US/PI system. Furthermore, we comprehensively delineated the effects of ultrasonic power, periodate concentration, temperature, pH, coexisting inorganic ions, and dissolved organic matter on the removal efficiency of organic pollutants and summarized application cases of the US/PI system for the degradation of different pollutants. Finally, we also offered prospective discussions on the future trajectories of US/PI technology development.

2.
Water Sci Technol ; 89(4): 1082-1093, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38423618

RESUMO

The appearance of recalcitrant organic pollutants such as antibiotics in water bodies has gained a lot of attention owing to their adverse effects on organisms and humans. The current study aims to develop a novel approach to eliminate antibiotic tetracycline (TC) from a synthetic aqueous solution based on the advanced oxidation process triggered by MnSO4-catalyzed NaIO4. A single-factor experiment was performed to observe the impact of pH, NaIO4 concentration, and MnSO4 dosage on TC decomposition, and a three-factor, three-level response surface experiment with TC removal rate as the dependent variable was designed based on the range of factors determined from the single-factor experiment. The single-factor experiment revealed that the ranges of pH, NaIO4 concentration, and MnSO4 dosage need to be further optimized. ANOVA (analysis of variance) results showed that the data from the response surface experiment were consistent with the quadratic model with high R2 (0.9909), and the predicted values were very close to the actual values. After optimization by response surface methodology, the optimal condition obtained was pH = 6.7, [NaIO4] = 0.39 mM, and [MnSO4] = 0.12 mM, corresponding to a TC removal of 96.56%. This optimization condition was fully considered to save the dosage of the high-priced chemical NaIO4.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Poluentes Químicos da Água/química , Tetraciclina/química , Antibacterianos/química , Água/química , Purificação da Água/métodos , Adsorção
3.
Molecules ; 28(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38005327

RESUMO

A novel photochromic heteropolyacid-based composite film consisting of phosphomolybdic acid (PMoA), ZnO, and polyvinylpyrrolidone (PVP) was fabricated by a sol-gel process. The microstructure and photochromic properties of the PMoA/ZnO/PVP were characterized via Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible spectroscopy (UV-Vis). The FTIR spectra showed that the basic structures of ZnO and PVP, and the Keggin structure of PMoA in the PMoA/ZnO/PVP composite film, had not been destroyed during the preparation. The TEM images demonstrated that ZnO presented a rod-like structure, while PMoA was spherical, and many PMoA balls adhered to the surface of the ZnO rods. The XPS spectra of Mo 3d indicated that the valency of Mo atoms in the PMoA/ZnO/PVP was changed by visible light exposure. After visible light irradiation, the PMoA/ZnO/PVP varied from slight yellow to blue, while undergoing an opposite color change upon heating. The discoloration mechanism of the PMoA/ZnO/PVP was consistent with the photoelectron transfer mechanism.

4.
Water Sci Technol ; 88(11): 2986-2995, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38096083

RESUMO

Antibiotic contamination in water has received significant attention in recent years for the reason that the residuals of antibiotics can promote the progression of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs). It is difficult to treat antibiotics using conventional biological treatment methods. In order to investigate an efficient new method of treating antibiotics in water, in this study, microwave (MW) was employed in revitalizing peroxymonosulfate (PMS) to treat typical antibiotic tetracycline (TC). The Box-Behnken design (BBD) was applied to organize the experimental schemes. The response surface methodology (RSM) optimization was run to derive the best experimental conditions and validated using actual data. Moreover, the main mechanisms of PMS activation via MW were resolved. The results demonstrated that the relationship between TC removal rate and influencing factors was consistent with a quadratic model, where the P-value was less than 0.05, and the model was considered significant. The optimal condition resulting from the model optimization were power = 800 W, [PMS] = 0.4 mM, and pH = 6.0. Under such conditions, the actual removal of TC was 99.3%, very close to the predicted value of 99%. The quenching experiment confirmed that SO4•- and •OH were jointly responsible for TC removal.


Assuntos
Antagonistas de Receptores de Angiotensina , Micro-Ondas , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/análise , Tetraciclina , Peróxidos , Água
5.
Water Sci Technol ; 88(6): 1495-1507, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37768751

RESUMO

Organic pollutants in water bodies pose a serious environmental problem, and photocatalytic technology is an efficient and environmentally friendly water treatment method. Titanium dioxide (TiO2) is a widely used photocatalyst, but it suffers from some drawbacks such as a narrow light response range, fast charge recombination, and low photocatalytic activity. To improve the photocatalytic performance of TiO2, this article reviews the preparation methods, performance evaluation, and applications of modified TiO2 photocatalysts. Firstly, the article introduces the effects of doping modification, semiconductor composite modification, and other modification methods on the structure and properties of TiO2 photocatalysts, as well as the common characterization techniques and activity test methods of photocatalysts. Secondly, the article discusses the effects and mechanisms of modified TiO2 photocatalysts on degrading dye, pesticide, and other organic pollutants in water bodies, as well as the influencing factors. Finally, the article summarizes the main achievements and advantages of modified TiO2 photocatalysts in degrading organic pollutants in water bodies, points out the existing problems and challenges, and prospects for the development direction and future of this field.


Assuntos
Poluentes Ambientais , Praguicidas , Tecnologia
6.
Water Sci Technol ; 83(10): 2327-2344, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34032613

RESUMO

Water pollution caused by refractory organics has attracted widespread concern in recent years. At this time peroxymonofulfate (PMS) has been widely used to generate sulfate radicals with high reactivity and potential. The direct reaction rate between PMS and organics is very low. However, the activated PMS has a strong oxidizing ability on organics due to its conversion into sulfate radicals. Recently, the free radicals generated by oxidant PMS and catalyst biochar have proven to be an effective species in dealing with refractory organics. In order to enable researchers to better understand the current research status of PMS/biochar, and to promote the development and application of PMS/biochar system, we have written this review. This review in detail described the mechanism of PMS activated by biochar materials, and summarized the influencing factors of refractory organics degradation in the PMS/biochar system. In addition, the active sites of PMS/biochar, the degradation mechanism of refractory organics, and the reusability of biochar catalysts were also discussed. Finally, the concluding remarks and perspectives were made for future research on the PMS/biochar system in the degradation of refractory organics.


Assuntos
Peróxidos , Água , Carvão Vegetal
7.
Water Sci Technol ; 81(5): 853-875, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32541106

RESUMO

Recently, the advanced oxidation processes (AOPs) based on sulfate radicals (SRs) for organics degradation have become the focus of water treatment research as the oxidation ability of SRs are higher than that of hydroxyl radicals (HRs). Since the AOP-SRs can effectively mineralize organics into carbon dioxide and water under the optimized operating conditions, they are used in the degradation of refractory organics such as dyes, pesticides, pharmaceuticals, and industrial additives. SRs can be produced by activating persulfate (PS) with ultraviolet, heat, ultrasound, microwave, transition metals, and carbon. The activation of PS in iron-based transition metals is widely studied because iron is an environmentally friendly and inexpensive material. This article reviews the mechanism and application of several iron-based materials, including ferrous iron (Fe2+), ferric iron (Fe3+), zero-valent iron (Fe0), nano-sized zero-valent iron (nFe0), materials-supported nFe0, and iron-containing compounds for PS activation to degrade refractory organics. In addition, the current challenges and perspectives of the practical application of PS activated by iron-based systems in wastewater treatment are analyzed and prospected.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Ferro , Oxirredução , Sulfatos , Águas Residuárias
8.
Water Sci Technol ; 72(12): 2154-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26676003

RESUMO

An adsorbent, volcanic rocks coated with α-Fe2O3nanoparticles, was prepared and utilized for the removal of Cu(II) and Ni(II) ions from an aqueous solution. Characterization of the coated volcanic rocks indicated that the α-Fe2O3nanoparticles were successfully and homogeneously distributed on the volcanic rocks, including penetration into rock pores. Batch experiments were conducted to investigate adsorption performance. The adsorption behavior of both ions was found to best fit a pseudo second-order model and Langmuir isotherm. The maximum adsorption capacities of Cu(II) and Ni(II) ions were 58.14 mg g⁻¹ and 56.50 mg g⁻¹ at 293 K, respectively, and increased with rising temperature. The loaded α-Fe2O3nanoparticles onto volcanic rock significantly increased removal of Cu(II) and Ni(II) ions. The adsorption process was combined control of film diffusion and intra-particle diffusion. Adsorption thermodynamics indicated the adsorption process was spontaneous and occurred mainly through chemisorption. The results confirmed that the volcanic rocks coated with α-Fe2O3nanoparticles acted as a high-efficiency and low-cost absorbent, and effectively removed Cu(II) and Ni(II) from wastewater.


Assuntos
Cobre/metabolismo , Compostos Férricos/química , Nanopartículas Metálicas/química , Níquel/metabolismo , Águas Residuárias/química , Adsorção , Difusão , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Porosidade , Temperatura , Termodinâmica , Fatores de Tempo
9.
Environ Sci Pollut Res Int ; 30(43): 96782-96794, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37581737

RESUMO

In this study, the visible light-responsive catalysts Fe3O4/Bi2WO6 were prepared and characterized by BET, SEM, EDS, XRD, XPS, and MPMS. The performances of five catalysts (0.05 Fe/Bi, 0.13 Fe/Bi, 0.17 Fe/Bi, 0.21 Fe/Bi, and 0.30 Fe/Bi) for photocatalytic degradation of bisphenol A under visible light (300-W Xe lamp) were compared. Among five catalysts, 0.17 Fe/Bi (the molar ratio of Fe3O4 to Bi2WO6 was 0.17) acquired the highest BPA photocatalytic removal of 90.2% at 120 min. With the synergistic effect between Vis/0.17 Fe/Bi and peroxymonosulfate (PMS), the BPA removal obtained was as high as 100% at 90 min ([BPA] = 100 mg/L, [0.17 Fe/Bi] = 1.25 g/L, [PMS] = 2.0 g/L, and T = 25 °C). After five times reused of 0.17 Fe/Bi, its removal of BPA dropped by 13.4% in presence of PMS, which demonstrated 0.17 Fe/Bi possessed relatively stable performance. High BPA degradation was attributed to the attacking effects of various oxide species (SO4•-, •OH, h+, O2•-) generated in the Fe3O4/Bi2WO6/PMS system under the cooperation of photocatalyst Fe3O4/Bi2WO6 and oxidizing agent PMS.


Assuntos
Luz , Peróxidos , Fenóis
10.
Environ Sci Pollut Res Int ; 30(10): 27394-27408, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36378386

RESUMO

Rice husk biochars (BCs) doped with ferric chloride were prepared by one-pot method, characterized by SEM, EDS, BET, XRD, and FTIR, and utilized to catalyze peroxymonosulfate (PMS) for tetracycline (TC) degradation. Various influencing factors in the BC/PMS/TC system were investigated, as well as the recycling performance of the optimal BC. The mechanism of BC activation of PMS and degradation of TC were analyzed based on the free radicals quenching experiment and the pathways of TC degradation. The results demonstrated that bBC3 was an excellent catalyst with large specific surface area; the amounts of oxidant and catalyst were important factors affecting the catalytic performance of PMS, while pH had less effect on TC degradation; 10 mM of chloride ions inhibited the TC degradation, while 20 mM promoted the TC degradation; other ions and humic acid inhibited the TC degradation at the set concentrations; activation of PMS by bBC3 yielded species with strong oxidative activity, which were primarily responsible for TC degradation. The bBC3 obtained stable performance for removing TC. This study provided a pathway for the deep utilization of waste rice husks besides an effective method for degrading TC.


Assuntos
Carvão Vegetal , Nanocompostos , Carvão Vegetal/química , Antibacterianos , Tetraciclina/química , Peróxidos/química , Nanocompostos/química
11.
Sci Total Environ ; 905: 167284, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37741396

RESUMO

Energy scarcity and environmental pollution concerns have become substantial impediments to sustainable global economic development. The advent of semiconductor photocatalysis technology provides a potential possibility for effectively alleviating excessive energy consumption and maintaining the long-term stability of the aqueous ecosystem. However, the inefficient transmission efficiency of charge carriers and the high recombination rate of photogenerated electron-hole pairs will culminate in the mediocre catalytic performance observed in conventional semiconductor materials. Fortunately, the piezo-photocatalysis ingeniously integrates the piezoelectric properties of piezoelectric crystals with the optoelectronic properties of semiconductors, thus building a theoretical system of photo-electric-chemical three-phase coupled catalysis. Currently, the photo-mechanical energy synergistic catalytic oxidation degradation process, as a cutting-edge technology based on clean renewable energy, has been perceived as a promising environmental remediation strategy. Herein, a critical review of the application of piezo-photocatalysis in environmental pollution control was delivered. We undertook a comprehensive analysis to elucidate the underlying enhancement mechanism of the piezoelectric effect on photocatalysis in terms of charge migration dynamics and pertinent energy band bending phenomena. In addition, we meticulously summarized diverse innovative methods for introducing vibration energy in piezo-photocatalytic degradation systems (ultrasound, fluid mechanical energy, airflow, self-assembled reactors, etc.). Then, state-of-the-art research advances in the field of environmental pollution control and the corresponding environmental decontamination mechanisms were elaborated based on various integration modes of catalysts (single component, noble metal deposition, heterojunction, coupled substrate materials, etc.). Eventually, an in-depth assessment of current limitations and development trends of piezo-photocatalytic degradation technology has been proposed, along with proactive strategies aimed at surmounting the existing challenges.

12.
Environ Sci Pollut Res Int ; 30(17): 49917-49929, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36787069

RESUMO

A novel magnetic Bi2WO6/TiO2/Fe3O4 photocatalyst was synthesized by a hydrothermal approach. The pattern, structure, elemental composition, light-absorbing properties, and magnetism of Bi2WO6/TiO2/Fe3O4 were characterized and analyzed. The performance, influencing factors, and mechanism of Bi2WO6/TiO2/Fe3O4 towards bisphenol A (BPA) degradation were investigated and deduced. BPA removal up to 95% was achieved with the addition of 1.25 g/L Bi/Ti/Fe2 (molar ratio of Bi2WO6:TiO2:Fe3O4 = 2:1:0.17) in the solution containing 10 mg/L BPA at pH 5.6. The performance of Bi/Ti/Fe2 was stable for five cycles at least after extracted from the reacted solution by magnet. Photoexcited h+, •OH, and •O2- formed in the reaction mainly contributed to BPA degradation. The Bi/Ti/Fe2 composite was composed of a three-layer petal structure from outside to inside to be Bi2WO6, TiO2, and Fe3O4. This structure was conducive in forming a heterojunction between TiO2 and Bi2WO6, inhibiting the merging of photoexcited e- and h+, and improving the photocatalytic efficiency.


Assuntos
Luz , Fenóis , Fenóis/química , Compostos Benzidrílicos/química , Catálise
13.
Environ Sci Pollut Res Int ; 27(32): 40848-40856, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32677011

RESUMO

Levels of heavy metals and polybrominated diphenyl ethers (PBDEs) were determined in fishes sampled in Jilin Songhua Lake, China. Concentrations and congener profiles of these contaminants varied by fish type. The highest concentrations of Zn, Cu, Mn, and Cd were found in three omnivorous fish (Carassius carassius, Hypomesus olidus, and Hemiculter leucisculus). The highest concentrations of Ni, Cr, and Hg were found in Silurus asotus and Hemibarbus maculatus which are two kinds of carnivorous fish. The minimum total concentration of the seven PBDEs of fish was 0.093 ng/g wet weight (ww) in Ctenopharyngodon idellus, while the maximum, 0.342 ng/g ww, was detected in Aristichthys nobilis. Of all the congeners, BDE 28 and 47 were dominant. The estimated daily intake (EDI) of these metals and PBDEs via consuming the fishes was estimated to be 1.159-10.121 µg/kg bw/day and 0.046-0.597 ng/kg bw/day, respectively. The total hazard quotients (THQs) of both types of pollutants were far below 1, indicating that the health risks of these pollutants were low for the people who consumed the fish species from the Songhua Lake.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , China , Monitoramento Ambiental , Peixes , Éteres Difenil Halogenados/análise , Lagos , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise
14.
Artigo em Inglês | MEDLINE | ID: mdl-30150528

RESUMO

Road dust, which contains trace elements and certain organic matter that can be harmful to human health, plays an important role in atmospheric pollution. In this paper, concentrations of 16 elements in the road dust of Changchun, China were determined experimentally. A total of 100 samples were collected using plastic brushes and dustpans, and the elements were analyzed by an inductively coupled plasma optical emission spectrometer (ICP-OES). It was indicated that the elements could be divided into major and trace elements. The concentration of trace elements followed the trend: mercury (Hg) > manganese (Mn) > zinc (Zn) > lead (Pb) > chromium (Cr) > copper (Cu) > vanadium (V) > arsenic (As) > nickel (Ni) > cobalt (Co) > cadmium (Cd). Contamination-level-assessment calculated by the geo-accumulation index (Igeo) showed that the pollution-level ranged from non-contaminated to extreme contamination, while the calculations of enrichment factor (EF) showed that EF values exhibited a decreasing trend: Cd > Hg > As > Pb > Cu > Co > Zn > Ni > Cr > V > Mn > Mg > Fe > Sr > Ba. In our study, ingestion was the greatest exposure pathway for humans to intake trace elements by calculating the average daily dose (ADD) from three routes (ingestion, inhalation, and dermal contact). According to the health risk assessment results, the non-carcinogenic risks that human beings suffered from these elements were insignificant. Additionally, the hazard quotient (HQ) values were approximately one-tenth in the case of children. Meanwhile, the total excess cancer risk (ECR) was also lower than the acceptable level (10-6⁻10-4) for both adults and children.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poeira/análise , Exposição Ambiental/análise , Metais Pesados/análise , Adulto , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Criança , China , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental/métodos , Humanos , Metais Pesados/toxicidade , Medição de Risco , Meios de Transporte
15.
Huan Jing Ke Xue ; 36(7): 2617-25, 2015 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-26489333

RESUMO

To optimize the performance of nitrogen and phosphorus removal, based on test results and mass balance, the feasibility of control for nitrogen and phosphorus removal in the single sludge system with a continuous flow using ORP in the main anoxic stage (ORPm) was investigated, meanwhile, the objective laws of conversion for nitrogen and phosphorus under different ORPm were expounded. During the experiments, nitration liquid internal circulation flow rate was controlled as the variable. The OPRm was controlled by PLC automatically, and the other operation parameters remained unchanged. The experiments tested six different ORPs in main anoxic stage affecting nitrogen and phosphorus removal, i.e., -143, -123, -105, -95, -72, and -57 mV. The ammonia concentration changed a little in effluent under the condition of different ORP.s, however, the TN and TP concentrations changed obviously. When the ORPm was controlled as -95 mV, the active sludge reached the maximal nitrogen and phosphorus removal with the continuous flow. According to mass balance calculation, when ORPm increased from -143 mV to -57 mV, (1) In the main anoxic stage, nitrate nitrogen reaction rates were 214. 40, 235. 16, 241. 16, 244. 02, 240. 90 and 233. 65 mg.h-1, respectively; the amount of total nitrogen conversions were 244. 92, 255. 85, 328. 04, 347. 45, 336. 42 and 320. 60 mg.h-1, respectively; both reaction rates reached the peak at the ORPm of -95 mV; (2)Phosphorus release rates in anaerobic stage were -214. 12, -228. 64, -259. 26, -264.54, -256.92 and -252.84 mg.h-1, respectively; total phosphorus absorption rates were 252. 15, 275.85, 332. 25, 338. 10, 336. 15 and 324. 30 mg.h-1, respectively, and phosphorus absorption rates were 30. 27, 62. 14, 124. 58, 154. 41, 150. 41 and 138. 30 mg.h-1, respectively, in the main anoxic stage; phosphorus absorption rates reached the peak when ORPm was -95 mV. The experiments revealed that ORPm could be used as the control parameter of nitrogen and phosphorus removal in single sludge system with a continuous flow.


Assuntos
Reatores Biológicos , Nitrogênio/química , Fósforo/química , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Nitratos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA