Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(10): 6566-6579, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38422385

RESUMO

Superior photostability, minimal phototoxicity, red-shifted absorption/emission wavelengths, high brightness, and an enlarged Stokes shift are essential characteristics of top-tier organic fluorophores, particularly for long-lasting super-resolution imaging in live cells (e.g., via stimulated emission depletion (STED) nanoscopy). However, few existing fluorophores possess all of these properties. In this study, we demonstrate a general approach for simultaneously enhancing these parameters through the introduction of 9,9-dimethyl-9,10-dihydroacridine (DMA) as an electron-donating auxochrome. DMA not only induces red shifts in emission wavelengths but also suppresses photooxidative reactions and prevents the formation of triplet states in DMA-based fluorophores, greatly improving photostability and remarkably minimizing phototoxicity. Moreover, the DMA group enhances the fluorophores' brightness and enlarges the Stokes shift. Importantly, the "universal" benefits of attaching the DMA auxochrome have been exemplified in various fluorophores including rhodamines, difluoride-boron complexes, and coumarin derivatives. The resulting fluorophores successfully enabled the STED imaging of organelles and HaloTag-labeled membrane proteins.


Assuntos
Corantes Fluorescentes , Humanos , Rodaminas , Microscopia de Fluorescência/métodos , Células HeLa , Ionóforos
2.
Anal Chem ; 96(25): 10416-10425, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38861486

RESUMO

5,10-Dimethyl-5,10-dihydrophenazine (MP) is utilized as an effective auxochrome, leveraging its highly conjugated structure to enhance the photophysical and photochemical properties of fluorophores. As illustrated in the difluoride-boron complex and coumarin fluorophores, the extensive conjugation of MP auxochrome substantially red-shifts the absorption/emission wavelengths and increases Stokes shift due to the intensified intramolecular charge transfer effect; notably, MP auxochrome effectively improves fluorophores' photostability by mitigating photooxidative reactions through enhanced electron density delocalization on nitrogen atoms and increased ionization potential. Importantly, MP-based fluorophores demonstrate applicability in stimulated emission depletion nanomicroscopy, showcasing their utility in lipid droplet labeling.

3.
Anal Chem ; 96(28): 11581-11587, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-38951996

RESUMO

Ferroptosis is an iron-dependent programmed cell death that is characterized by the dysregulation of lipid reactive oxygen species (ROS) production, causing abnormal changes in hypochlorous acid (HClO) levels in lysosomes. Super-resolution imaging can observe the fine structure of the lysosome at the nanometer level; therefore, it can be used to detect lysosome HClO levels during ferroptosis at the suborganelle level. Herein, we utilize a ratiometric fluorescent probe, SRF-HClO, for super-resolution imaging of lysosome HClO. Structured-illumination microscopy (SIM) improves the accuracy of lysosome targeting and enables the probe SRF-HClO to be successfully applied to rapidly monitor the up-regulated lysosome HClO at the nanoscale during inflammation and ferroptosis. Importantly, the probe SRF-HClO can also detect HClO changes in inflammatory and ferroptosis mice and evaluate the inhibitory effect of ferroptosis on mice tumors.


Assuntos
Ferroptose , Corantes Fluorescentes , Ácido Hipocloroso , Lisossomos , Ferroptose/efeitos dos fármacos , Corantes Fluorescentes/química , Ácido Hipocloroso/análise , Ácido Hipocloroso/metabolismo , Lisossomos/química , Lisossomos/metabolismo , Animais , Camundongos , Humanos , Imagem Óptica , Células RAW 264.7
4.
Anal Chem ; 96(21): 8689-8695, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38748889

RESUMO

Tumor microenvironment-responsive phototheranostic agents are highly sought after for their ability to improve diagnostic accuracy and treatment specificity. Here, we introduce a novel single-molecule probe, POZ-NO, which is activated by nitric oxide (NO) and weak acidity, enabling dual-mode imaging and photothermal therapy (PTT) of tumors. In acidic environments with elevated NO levels, POZ-NO exhibits a distinctive ratiometric fluorescence signal shift from the red to near-infrared, accompanied by a 700 nm photoacoustic signal. Additionally, POZ-NO demonstrated potent photothermal effects upon NO and acidity activation, achieving an impressive conversion efficiency of 74.3% under 735 nm laser irradiation. In vivo studies confirm POZ-NO's ability to accurately image tumors through ratiometric fluorescence and photoacoustic modes while selectively treating tumors with PTT.


Assuntos
Óxido Nítrico , Técnicas Fotoacústicas , Terapia Fototérmica , Microambiente Tumoral , Óxido Nítrico/análise , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Animais , Humanos , Camundongos , Imagem Óptica , Concentração de Íons de Hidrogênio , Nanomedicina Teranóstica , Camundongos Endogâmicos BALB C , Feminino , Corantes Fluorescentes/química , Fluorescência
5.
Org Biomol Chem ; 22(18): 3725-3731, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38647088

RESUMO

For the first time, three acceptor-donor-acceptor (A-D-A)-type boranil fluorescent dyes, CSU-BF-R (R = H, CH3, and OCH3), featuring phenothiazine as the donor, were designed and synthesized. CSU-BF-R exhibited remarkable photophysical characteristics, including large Stokes shifts (>150 nm), high fluorescence quantum yields (up to 40%), long-wavelength emissions, and strong red solid-state fluorescence. Moreover, these CSU-BF-R fluorescent dyes were demonstrated to function as highly selective and sensitive ratiometric fluorescent probes for detecting hypochlorous acid (HClO). The preliminary biological applications of CSU-BF-OCH3 for sensing intracellular HClO in living cells and zebrafish were demonstrated. Therefore, CSU-BF-R possess the potential to further explore the physiological and pathological functions associated with HClO and provide valuable insights into the design of high-performance A-D-A-type fluorescent dyes.


Assuntos
Desenho de Fármacos , Corantes Fluorescentes , Ácido Hipocloroso , Peixe-Zebra , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Animais , Ácido Hipocloroso/análise , Ácido Hipocloroso/química , Humanos , Compostos de Anilina/química , Compostos de Anilina/síntese química , Estrutura Molecular , Imagem Óptica
6.
Front Oncol ; 14: 1327851, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444688

RESUMO

Background: Cervical cancer is currently the second leading cause of cancer death among women from developing countries (1). However, there is a lack of effective treatment methods, and the existing treatments often result in significant adverse reactions and high chances of recurrence, which ultimately impact the prognosis of patients. As a result, the application of nanotechnology, specifically nanoparticle-based approaches, in the diagnosis and treatment of cervical cancer has gained significant attention. This study aims to examine the current research status and future development trends of nanotechnology in relation to cervical cancer using a bibliometric perspective. Methods: A bibliometric analysis was performed to gather relevant research papers from the Web of Science database. VOSviewer and CiteSpace were utilized to conduct quantitative analysis and identify hot topics in the field, focusing on countries, institutions, journals, authors, and keywords. Result: A total of 997 eligible literature were retrieved. From January 1, 2014 to September 20, 2023, the overall number of publications showed an upward trend. The paper mainly comes from China (n=414). The main institution is the Chinese Academy of Sciences (n=62), and 60% of the top 10 institutions in the number of documents issued are from China. First authors Ma, Rong (n=12) and Alifu, Nuernisha (n=12). The journal with the highest publication volume is ACS Applied Materials&INTERFACES (n=35), and the journal with the highest citation frequency is BIOMATERIALS (n=508). "Nanoparticles (n=295)", "cervical cancer (n=248)", and "drug delivery (n=218)" are the top three most frequently occurring keywords. In recent years, photothermal therapy and indocyanine green have become research hotspots. Conclusion: The application of nanotechnology in the field of cervical cancer has garnered considerable attention. Nanoparticles-based methods for diagnosis, administration, and treatment have proven to be instrumental in enhancing the sensitivity of cervical cancer detection, improving the accuracy and efficiency of administration, and reducing drug toxicity. Enhancing treatment efficacy and improving patient prognosis have emerged as current research priorities and future directions.

7.
Front Oncol ; 14: 1395166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577324

RESUMO

[This corrects the article DOI: 10.3389/fonc.2024.1327851.].

8.
J Mater Chem B ; 12(7): 1846-1853, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38284427

RESUMO

Combining phototherapy with other treatments has significantly advanced cancer therapy. Here, we designed and fabricated calcium-enriched carbon nanoparticles (Ca-CNPs) that could effectively deplete glutathione (GSH) and release calcium ions in tumors, thereby enhancing the efficacy of photodynamic therapy (PDT) and the calcium overload effect that leads to mitochondrial dysfunction. Due to the electrostatic interaction, π-π stacking interaction, multiple hydrogen bonds, and microporous structures, indocyanine green (ICG) was loaded onto the surface of Ca-CNPs with a high loading efficiency of 44.7 wt%. The obtained Ca-CNPs@ICG can effectively improve the photostability of ICG while retaining its ability to generate singlet oxygen (1O2) and undergo photothermal conversion (Ca-CNPs@ICG vs. ICG, 45.1% vs. 39.5%). In vitro and in vivo experiments demonstrated that Ca-CNPs@ICG could be used for near-infrared fluorescence imaging-guided synergistic calcium overload, photothermal therapy, and GSH depletion-enhanced PDT. This study sheds light on the improvement of 1O2 utilization efficiency and calcium overload-induced mitochondrial membrane potential imbalance in tumor cells.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Verde de Indocianina/farmacologia , Verde de Indocianina/química , Cálcio , Terapia Fototérmica , Nanopartículas/química , Neoplasias/terapia , Imagem Óptica , Carbono/farmacologia
9.
Adv Sci (Weinh) ; 11(31): e2402838, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896788

RESUMO

Chemoselective modification of specific residues within a given protein poses a significant challenge, as the microenvironment of amino acid residues in proteins is variable. Developing a universal molecular platform with tunable chemical warheads can provide powerful tools for precisely labeling specific amino acids in proteins. Cysteine and lysine are hot targets for chemoselective modification, but current cysteine/lysine-selective warheads face challenges due to cross-reactivity and unstable reaction products. In this study, a versatile fluorescent platform is developed for highly selective modification of cysteine/lysine under biocompatible conditions. Chloro- or phenoxy-substituted NBSe derivatives effectively labeled cysteine residues in the cellular proteome with high specificity. This finding also led to the development of phenoxy-NBSe phototheragnostic for the diagnosis and activatable photodynamic therapy of GSH-overexpressed cancer cells. Conversely, alkoxy-NBSe derivatives are engineered to selectively react with lysine residues in the cellular environment, exhibiting excellent anti-interfering ability against thiols. Leveraging a proximity-driven approach, alkoxy-NBSe probes are successfully designed to demonstrate their utility in bioimaging of lysine deacetylase activity. This study also achieves integrating a small photosensitizer into lysine residues of proteins in a regioselective manner, achieving photoablation of cancer cells activated by overexpressed proteins.


Assuntos
Cisteína , Corantes Fluorescentes , Lisina , Lisina/química , Cisteína/química , Cisteína/metabolismo , Humanos , Corantes Fluorescentes/química , Fotoquimioterapia/métodos , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA