Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biotechnol Lett ; 43(1): 153-164, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33145670

RESUMO

OBJECTIVES: Breast cancer is a popular fatal malignant tumor for women with high of rates incidence and mortality. Development of the new approaches for breast cancer targeted diagnosis and chemotherapy is emergently needed by the current clinical practice, the important first step is finding a breast cancer specifically binding molecule or fragment as early clinical indicators. RESULTS: By a phage-displayed peptide library, a 12-mer peptide, CSB1 was screened out using MCF-7 cells as the target. The consequently results under immunofluorescence and laser scanning confocal microscope (LSCM) indicated that CSB1 bound MCF-7 cells and breast cancer tissues specifically and sensitively with high affinity. Bioinformatics analysis suggested that the peptide CSB1 targets the 5-Lipoxygenase-Activating Protein (FLAP), which has been implicated in breast cancer progression and prognosis. CONCLUSIONS: The peptide, CSB1 is of the potential as a candidate to be used for developing the new approaches of molecular imaging detection and targeting chemotherapy of breast cancer in the future.


Assuntos
Bioprospecção/métodos , Neoplasias da Mama , Biblioteca de Peptídeos , Peptídeos , Mama/química , Mama/metabolismo , Neoplasias da Mama/química , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Peptídeos/análise , Peptídeos/química , Peptídeos/metabolismo
2.
Nanotechnology ; 30(7): 075604, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30523991

RESUMO

'Targeting peptides' have demonstrated their value in diagnostic imaging and therapy and novel peptide probes specific to cervical cancer were developed. In the M13KE phage dodecapeptide (12-mer) peptide library, the phage clone S7 showed the best binding to the cancer cells as confirmed by immunofluorescence and flow cytometry assays, and was selected for continued studies. Its binding peptide, CSP3, was synthesized from the sequence of S7's 12-mer at the N-terminus of the minor coat protein pIII of this M13KE phage vector. The peptide's binding was analyzed by the same assays used for S7. It was also assessed using competitive inhibition and binding to a tissue chip. The results demonstrated that the CSP3 peptide bound to cervical carcinoma cells with high sensitivity and specificity. The positive results indicated that the peptide CSP3, conjugated with nanomaterials and chemotherapeutics, may be developed as a targeting vehicle for therapeutic drug delivery against cervical cancer, especially cervical cancer with multiple drug resistance. For this aim, we prepared a CSP3 conjugated liposome drug delivery system containing doxorubicin (DOX) and microRNA101 (miR101) expression plasmids (CSP3-Lipo-DOX-miR101), and the primary result showed that the system demonstrated significantly enhanced cytotoxicity to SiHa cells and DOX resistant SiHa cells, SiHa/ADR. Our results showed that CSP3 is a cervical cancer targeting 12aa peptide with high specificity and sensitivity, and the CSP3 conjugated drug delivery system, CSP3-Lipo-DOX-miR101 has promising potential for development as an efficient drug system for the therapy of cervical cancer.


Assuntos
Doxorrubicina/análogos & derivados , MicroRNAs/farmacologia , Peptídeos/metabolismo , Neoplasias do Colo do Útero/metabolismo , Adulto , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Feminino , Humanos , MicroRNAs/química , Pessoa de Meia-Idade , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/isolamento & purificação , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Neoplasias do Colo do Útero/terapia
3.
Microsc Microanal ; 25(4): 950-960, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31172894

RESUMO

Annexin A2 (ANXA2) is reported to be associated with cancer development. To investigate the roles ANXA2 plays during the development of cancer, the RNAi method was used to inhibit the ANXA2 expression in caco2 (human colorectal cancer cell line) and SMMC7721 (human hepatocarcinoma cell line) cells. The results showed that when the expression of ANXA2 was efficiently inhibited, the growth and motility of both cell lines were significantly decreased, and the development of the motility relevant microstructures, such as pseudopodia, filopodia, and the polymerization of microfilaments and microtubules were obviously inhibited. The cancer cell apoptosis was enhanced without obvious significance. The possible regulating pathway in the process was also predicted and discussed. Our results suggested that ANXA2 plays important roles in maintaining the malignancy of colorectal and hepatic cancer by enhancing the cell proliferation, motility, and development of the motility associated microstructures of cancer cells based on a possible complicated signal pathway.


Assuntos
Anexina A2/metabolismo , Carcinogênese , Carcinoma Hepatocelular/fisiopatologia , Neoplasias Colorretais/fisiopatologia , Citoesqueleto/metabolismo , Neoplasias Hepáticas/fisiopatologia , Anexina A2/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Inativação Gênica , Humanos , Modelos Biológicos , Interferência de RNA
4.
Nanoscale ; 12(32): 17029-17044, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32780053

RESUMO

Hepatocellular carcinoma (HCC) is a severe malignant disease threatening human life. Current chemotherapy methods usually result in poor prognosis with low treatment efficacy and high side effects because of weak targeting specificity and fast acquisition of multidrug resistance (MDR). HCSP4 is a 12-aa peptide previously identified to specifically and sensitively bind to HCC cells and tissues. In this study, a novel class of HCC-targeting doxorubicin (DOX) delivery system, named HCSP4-Lipo-DOX-miR101, was synthesized and investigated for anticancer activity. HCSP4-Lipo-DOX-miR101 exhibited specific HCC targeting characteristics and satisfactory anticancer potency against HepG2 and HepG2/ADR cells, particularly HepG2/ADR cells. Moreover, the expression levels of genes closely related to membrane transport and cancer growth were significantly suppressed. This finding suggests that HCSP4-Lipo-DOX-miR101 can cause DOX-resistant HCC cell death and growth inhibition based on the targeting of MDR-related genes by miR-101. In conclusion, the findings of this study suggest that HCSP4-Lipo-DOX-miR101 may serve as a promising novel targeted delivery system for improving the therapeutic efficiency of drug-resistant hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Preparações Farmacêuticas , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , MicroRNAs/genética
5.
Physiol Plant ; 132(4): 514-25, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18334004

RESUMO

Recently, in animals, carbon monoxide (CO), like nitric oxide (NO), was implicated as another important physiological messenger or bioactive molecule. Previous researches indicate that heme oxygenase (HO)-1 (EC 1.14.99.3) catalyzes the oxidative conversion of heme to CO and biliverdin IXa (BV) with the concomitant release of iron. However, little is known about the physiological roles of CO in plant, especially in stomatal movement of guard cells. In the present paper, the regulatory role of CO during stomatal movement in Vicia faba was surveyed. Results indicated that, like sodium nitroprusside (SNP), CO donor hematin induced stomatal closure in dose- and time-dependent manners. These responses were also proved by the addition of gaseous CO aqueous solution with different concentrations, showing for the first time that CO and NO exhibit similar regulation role in the stomatal movement. Moreover, our data showed that 2,4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO)/N(G)-nitro-L-arginine-methyl ester (L-NAME) not only reversed stomatal closure by CO, but also suppressed the NO fluorescence induced by CO, implying that CO-induced stomatal closure probably involves NO/nitric oxide synthase (NOS) signal system. Additionally, the CO/NO scavenger hemoglobin (Hb) and CO-specific synthetic inhibitor zinc protoporphyrin IX (ZnPPIX), NO scavenger cPTIO and NOS inhibitor L-NAME reversed the darkness-induced stomatal closure and NO fluorescence. These results show that, maybe like NO, the levels of CO in guard cells of V. faba is higher in dark than that in light, HO-1 and NOS are the enzyme systems responsible for generating endogenous CO and NO in darkness, respectively, and that CO being from HO-1 mediates darkness-induced NO synthesis in guard cells' stomatal closure of V. faba.


Assuntos
Monóxido de Carbono/metabolismo , Óxido Nítrico/biossíntese , Vicia faba/metabolismo , Fluorescência , NG-Nitroarginina Metil Éster/farmacologia , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Protoporfirinas/farmacologia , Vicia faba/efeitos dos fármacos
6.
J Integr Plant Biol ; 50(12): 1539-48, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19093972

RESUMO

Here the regulatory role of CO during stomatal movement in Vicia faba L. was surveyed. Results indicated that, like hydrogen peroxide (H(2)O(2)), CO donor Hematin induced stomatal closure in dose- and time-dependent manners. These responses were also proven by the addition of gaseous CO aqueous solution with different concentrations, showing the first time that CO and H(2)O(2) exhibit the similar regulation role in the stomatal movement. Moreover, our data showed that ascorbic acid (ASA, an important reducing substrate for H(2)O(2) removal) and diphenylene iodonium (DPI, an inhibitor of the H(2)O(2)-generating enzyme NADPH oxidase) not only reversed stomatal closure by CO, but also suppressed the H(2)O(2) fluorescence induced by CO, implying that CO induced-stomatal closure probably involves H(2)O(2) signal. Additionally, the CO/NO scavenger hemoglobin (Hb) and CO specific synthetic inhibitor ZnPPIX, ASA and DPI reversed the darkness-induced stomatal closure and H(2)O(2) fluorescence. These results show that, perhaps like H(2)O(2), the levels of CO in guard cells of V. faba are higher in the dark than in light, HO-1 and NADPH oxidase are the enzyme systems responsible for generating endogenous CO and H(2)O(2) in darkness respectively, and that CO is involved in darkness-induced H(2)O(2) synthesis in V. faba guard cells.


Assuntos
Monóxido de Carbono/metabolismo , Peróxido de Hidrogênio/metabolismo , Estômatos de Plantas/fisiologia , Vicia faba/metabolismo , Escuridão , Hemina , Microscopia Confocal
7.
Arch Med Res ; 48(1): 27-34, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28577867

RESUMO

BACKGROUND AND AIMS: Myocardial infarction (MI) is accompanied by increased collagen deposition, cell necrosis and angiogenesis in cardiac tissue, which results in reduced ventricular compliance. Both microRNA-29a (miR-29a) and microRNA-101a (miR-101a) target the mRNAs encoding collagens and other proteins involved in fibrosis. METHODS: We assessed the effects of intermittent aerobic exercise on the expression of cardiac miR-29a and miR-101a and following effects on the TGFß, fos, Smad2/3, COL1A1 and COL3A1 in MI model of rats. Intermittent aerobic exercise for MI rats was begun from the second week and ended at the ninth week postsurgery. Expressions of microRNAs (miRNAs) and fibrosis-associated genes were detected from the infarction adjacent region located in the left ventricle. The heart coefficient (HC = heart weight/body weight) and hemodynamics assay were used to evaluate cardiac function level. RESULTS: Intermittent aerobic exercise inhibited myocardial interstitial collagen deposition and significantly improved cardiac function of MI rats. The results of real-time PCR and Western blot indicate that intermittent aerobic exercise enhanced the expression of miR-29a and miR-101a and inhibited TGFß pathway in the MI rats. CONCLUSIONS: Our results suggest that controlled intermittent aerobic exercise can inhibit TGFß pathway via up-regulation to the expression of miR-29a and miR-101a and finally cause a reduced fibrosis and scar formation in cardiac tissue. We believe that controlled intermittent aerobic exercise is beneficial to the healing and discovery of damaged cardiac tissues and their function after MI.


Assuntos
Colágeno/biossíntese , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Condicionamento Físico Animal , Animais , Fibrose , Hemodinâmica , Masculino , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima , Função Ventricular Esquerda
8.
Micron ; 85: 26-33, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27060670

RESUMO

Hepatocellular carcinoma (HCC) ranks as the fifth most common malignancy worldwide. The detailed mechanism of signal regulation for HCC progression is still not known, and the high motility of cancer cells is known as a core property for cancer progression maintenance. Annexin A2 (ANXA2), a calcium-dependent phospholipids binding protein is highly expressed in HCC. To study the roles the excessively expressed ANXA2 during the progression of HCC, we inhibited the ANXA2 expression in SMMC-7721 cells using RNAi, followed by the analysis of cell growth, apoptosis and cell motility. To explore the relationship between the cell behaviors and its structures, the microstructure changes were observed under fluorescence microscopy, laser scanning confocal microscopy and electron microscopy. Our findings demonstrated that down-regulation of ANXA2 results in decreased the cell proliferation and motility, enhanced apoptosis, suppressed cell pseudopodia/filopodia, inhibited expression of F-actin and ß-tubulin, and inhibited or depolymerized Lamin B. The cell contact inhibition was also analyzed in the paper. Take together, our results indicate that ANXA2 plays an important role to enhance the malignant behaviors of HCC cells, and the enhancement is closely based on its remodeling to cell structures.


Assuntos
Anexina A2/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/fisiopatologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/fisiopatologia , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestrutura , Actinas/genética , Actinas/metabolismo , Anexina A2/genética , Apoptose , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Progressão da Doença , Expressão Gênica , Humanos , Lamina Tipo B/metabolismo , Neoplasias Hepáticas/genética , Pseudópodes/ultraestrutura , Interferência de RNA , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
9.
Med Oncol ; 32(4): 125, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25790781

RESUMO

Focal adhesion kinase (FAK) plays important roles in cancer development. However, the significance of FAK expression in colorectal carcinoma and hepatocellular carcinoma has not been clarified. This study aims to explore the roles FAK played in the progression of colorectal carcinoma and hepatocellular carcinoma. RNAi method was used to inhibit the expression of FAK in Caco2 and SMMC-7721 cells. Reverse transcriptase polymerase chain reaction analysis and Western blot analysis were used to examine mRNA and protein expression of FAK. Then, the proliferation, motility and apoptosis of both types of cells were detected using MTT assay, wound healing/transwell assay and nuclear staining assay. The microstructure changes (F-actin, ß-tubulin and lamin B1) of SMMC-7721 cells were visualized by immunofluorescence. FAK was overexpressed in both cell lines and down-regulation of FAK resulted in suppression of cell proliferation, inhibition of cell migration and invasion. The apoptosis of cells was increased significantly following the FAK expression inhibition. Moreover, actin polymerization, ß-tubulin and lamin B1 expression of cells were significantly decreased. The results highlight the role of FAK in the progression of cancers. These findings suggest FAK serve as a potential therapeutic target for cancer therapy.


Assuntos
Apoptose , Carcinoma Hepatocelular/patologia , Movimento Celular , Proliferação de Células , Quinase 1 de Adesão Focal/metabolismo , Neoplasias Hepáticas/patologia , Western Blotting , Células CACO-2 , Carcinoma Hepatocelular/metabolismo , Imunofluorescência , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/genética , Humanos , Neoplasias Hepáticas/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Células Tumorais Cultivadas , Cicatrização
10.
Nanoscale ; 4(22): 7063-9, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23051856

RESUMO

Molecular dynamics simulations and density functional theory have been performed to investigate the spontaneous encapsulation of 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) into single-walled carbon nanotubes (SWCNTs). This phenomenon can be attributed to the van der Waals attractive force, hydrogen bonds and especially the π-π stacking effect. The [Bmim][Cl] molecules enter SWCNTs with larger diameters more rapidly, showing an interesting dependence on tube size. A high temperature is not beneficial to, and may even disrupt, the encapsulation of the [Bmim][Cl] molecules. It is also worth noting that the graphene nanoribbon entering the SWCNT would have an extremely different effect on this encapsulation process from when they wrap around the outer surface. Furthermore, the [Bmim][Cl] molecules can assist water transport in the SWCNT by expelling water molecules from the SWCNT. The proposed discoveries eventually provide a powerful way to fabricate nanoscale materials and devices and tune their properties.


Assuntos
Líquidos Iônicos/química , Nanotubos de Carbono/química , Grafite/química , Ligação de Hidrogênio , Imidazóis/química , Simulação de Dinâmica Molecular , Temperatura , Água/química
11.
Funct Plant Biol ; 38(10): 767-777, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32480934

RESUMO

The plant hormone ethylene regulates many aspects of plant growth and development. Despite the well-known relationship between ethylene and stress signalling, the involvement of ethylene in regulating stomatal movement is not completely explored. Here, the role and association between nitric oxide (NO) reduction and the inhibition of darkness-induced stomatal closure by ethylene was studied. Physiological data are provided that both ethylene-releasing compound 2-chloroethylene phosphonic acid (ethephon, ETH) and 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, reduced the levels of NO in Vicia faba L. guard cells, and then induced stomatal opening in darkness. In addition, ACC and ETH not only reduced NO levels in guard cells caused by exogenous NO (derived from sodium nitroprusside, SNP) in light, but also abolished NO that had been generated during a dark period and promoted stomatal opening. Interestingly, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) and hemoglobin (Hb), NO scavenger and the potent scavenger of NO/carbon monoxide (CO), respectively, also reduced NO levels by SNP and darkness. However, the above-mentioned effects of ACC and ETH were dissimilar to that of nitric oxide synthase (enzyme commission 1.14.13.39) inhibitor NG-nitro-L-Arg-methyl ester (L-NAME), which could neither reduce NO levels by SNP nor abolish NO that had been generated in the dark. Thus, it is concluded that ethylene reduces the levels of NO in V. faba guard cells via a pattern of NO scavenging, then induces stomatal opening in the dark.

12.
Funct Plant Biol ; 33(6): 573-583, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32689265

RESUMO

Previous studies have shown that cytokinins and auxins can induce the opening of stomata. However, the mechanism of stomatal opening caused by cytokinins and auxins remains unclear. The purpose of this paper is to investigate the relationship between hydrogen peroxide (H2O2) levels in guard cells and stomatal opening induced by cytokinins and auxins in Vicia faba. By means of stomatal bioassay and laser-scanning confocal microscopy, we provide evidence that cytokinins and auxins reduced the levels of H2O2 in guard cells and induced stomatal opening in darkness. Additionally, cytokinins not only reduced exogenous H2O2 levels in guard cells caused by exposure to light, but also abolished H2O2 that had been generated during a dark period, and promoted stomatal opening, as did ascorbic acid (ASA, an important reducing substrate for H2O2 removal). However, unlike cytokinins, auxins did not reduce exogenous H2O2, did not abolish H2O2 that had been generated in the dark, and therefore did not promote reopening of stoma induced to close in the dark. The above-mentioned effects of auxins were similar to that of diphenylene iodonium (DPI, an inhibitor of the H2O2-generating enzyme NADPH oxidase). Taken together our results indicate that cytokinins probably reduce the levels of H2O2 in guard cells by scavenging, whereas auxins limit H2O2 levels through restraining H2O2 generation, inducing stomatal opening in darkness.

13.
Funct Plant Biol ; 32(3): 237-247, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-32689127

RESUMO

Previous studies have showed that UV-B can stimulate closure as well as opening of stomata. However, the mechanism of this complex effect of UV-B is not clear. The purpose of this paper is to investigate the role and the interrelationship of H2O2 and NO in UV-B-induced stomatal closure in broad bean (Vicia faba L.). By epidermal strip bioassay and laser-scanning confocal microscopy, we observed that UV-B-induced stomatal closure could be largely prevented not only by NO scavenger c-PTIO or NO synthase (NOS) inhibitor l-NAME, but also by ascorbic acid (ASC, an important reducing substrate for H2O2 removal) or catalase (CAT, the H2O2 scavenger), and that UV-B-induced NO and H2O2 production in guard cells preceded UV-B-induced stomatal closure. These results indicate that UV-B radiation induces stomatal closure by promoting NO and H2O2 production. In addition, c-PTIO, l-NAME, ASC and CAT treatments could effectively inhibit not only UV-B-induced NO production, but also UV-B-induced H2O2 production. Exogenous H2O2-induced NO production and stomatal closure were partly abolished by c-PTIO and l-NAME. Similarly, exogenous NO donor sodium nitroprusside-induced H2O2 production and stomatal closure were also partly reversed by ASC and CAT. These results show a causal and interdependent relationship between NO and H2O2 during UV-B-regulated stomatal movement. Furthermore, the l-NAME data also indicate that the NO in guard cells of Vicia faba is probably produced by a NOS-like enzyme.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA