Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 23(5): 819-832, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29934699

RESUMO

Organometallic half-sandwich IrIII complexes of the type [(η5-Cpx)Ir(N^N)Cl]PF6 1-6, where Cpx = C5Me5 (Cp*), C5Me4C6H5 (Cpxph), C5Me4C6H4C6H5 (Cpxbiph), N^N is imionopyridine chelating ligand, were prepared and characterized. The X-ray crystal structure of complex 1 has been determined. Four compounds displayed higher anticancer potency than clinically used anticancer drug cisplatin against A549 cancer cells, especially complex 3 which is 8 times more active than cisplatin. No hydrolysis was observed by NMR and UV-Vis for complexes 3 and 6; however, these complexes show big differences in nucleobase binding, mainly decided by the imionopyridine chelating ligand. Complex 3 is stable in the presence of glutathione, but 6 reacted rapidly with glutathione. The octanol/water partition coefficients (log P) of 3 and 6 have been determined. In addition, these complexes display effective catalytic activity in converting coenzyme NADH to NAD+ by accepting hydride to form an Ir hydride adduct. The mechanism of actions of these complexes involves apoptosis induction, cell cycles arrest, and significant increase of reactive oxygen species levels in A549 cancer cells.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Irídio/química , Células A549 , Apoptose , Catálise , Sobrevivência Celular , Cristalografia por Raios X , Glutationa/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , NAD/química , Oxirredução , Espectroscopia de Prótons por Ressonância Magnética , Espécies Reativas de Oxigênio/metabolismo , Espectrofotometria Ultravioleta
2.
Water Sci Technol ; 77(1-2): 204-210, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29339619

RESUMO

The dewaterability of excess sludge significantly improved upon pretreatment with Fenton's reagent in this study. After 0.9 g/L of Fe2+ and 5.0 g/L of H2O2 were added to the sludge, and reacted for 2 h at pH = 4, the specific resistance to filtration (SRF) of the excess sludge decreased from an initial value of 29.74 × 1012 m/kg to 6.49 × 1012 m/kg. The factors that affected this improvement in sludge dewaterability as evaluated by SRF reduction showed the following order: H2O2 > pH > Fe2+ > reaction time. Furthermore, the hydrolysis performance of the sludge under the optimal reaction conditions was investigated. The results indicated that the concentration of soluble chemical oxygen demand in the supernatant increased almost 14 times compared to raw sludge, and the contents of soluble protein and soluble polysaccharide were more than 8 and 17 times higher, respectively, than for the untreated situation. However, the amounts of ammonia nitrogen (NH4+-N) and phosphate (PO43--P) released from the sludge showed different trends: NH4+-N increased by 200%, while PO43--P decreased by 82%. The production of volatile fatty acids (VFAs) from the treated sludge showed that total VFAs increased by 66%, and iso-butylacetic acid was the dominant product among the total VFAs.


Assuntos
Peróxido de Hidrogênio/química , Ferro/química , Esgotos/química , Purificação da Água/métodos , Análise da Demanda Biológica de Oxigênio , China , Dessecação , Filtração , Concentração de Íons de Hidrogênio , Hidrólise
3.
Tissue Eng Regen Med ; 21(2): 291-308, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37903982

RESUMO

BACKGROUND: The addition of growth factiors is commonly applied to improve the osteogenic differentiation of stem cells. However, for human pluripotent stem cells (hPSCs), their complex differentiation processes result in the unknown effect at different stages. In this study, we focused on the widely used bone forming peptide-1 (BFP-1) and investigated the effect and mechanisms of its addition on the osteogenic induction of hPSCs as a function of the supplementation period. METHODS: Monolayer-cultured hPSCs were cultured in osteogenic induction medium for 28 days, and the effect of BFP-1 peptide addition at varying weeks was examined. After differentiation for varying days (0, 7, 14, 21 and 28), the differentiation efficiency was determined by RT-PCR, flow cytometry, immunofluorescence, and alizarin red staining assays. Moreover, the expression of marker genes related to germ layers and epithelial-mesenchymal transition (EMT) was investigated at day 7. RESULTS: Peptide treatment during the first week promoted the generation of mesoderm cells and mesenchymal-like cells from hiPSCs. Then, the upregulated expression of osteogenesis marker genes/proteins was detected in both hESCs and hiPSCs during subsequent inductions with BFP-1 peptide treatment. Fortunately, further experimental design confirmed that treating the BFP-1 peptide during 7-21 days showed even better performance for hESCs but was ineffective for hiPSCs. CONCLUSION: The differentiation efficiency of cells could be improved by determining the optimal treatment period. Our study has great value in maximizing the differentiation of hPSCs by adding osteogenesis peptides based on the revealed mechanisms and promoting the application of hPSCs in bone tissue regeneration.


Assuntos
Células-Tronco Mesenquimais , Células-Tronco Pluripotentes , Humanos , Osteogênese , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Peptídeos/farmacologia , Peptídeos/metabolismo
4.
ACS Appl Bio Mater ; 6(1): 277-287, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36576779

RESUMO

The rapid development of antibiotic resistance has been considered a major threat to public health. Nanomaterials have risen to be an effective weapon to tackle this problem through multiple antibacterial mechanisms. The improved and tailored physiochemical properties of fine-tuned secondary nanoarchitectures contribute to the superior bactericidal actions of metal oxide structures. However, it is still challenging to construct secondary structures through mild green manufacturing methods. Here, we report the preferred antibacterial ZnO nanocrystal clusters formed by a green structure-tuning synthesis process, in which the primary ZnO nanoparticles with sizes <10 nm were assembled into different forms of clusters depending on the zinc salt concentration and temperature. ZnO clusters with a stable loose-assembly structure and a rougher surface exhibited better bactericidal ability with minimal inhibitory concentrations of 0.5 and 0.1 mg/mL against Escherichia coli and Staphylococcus aureus, respectively. The underlying mechanism is related to enhancing contact with bacteria, releasing small ZnO nanoparticles, and generating additional reactive oxygen species, which could aggravate the damage to bacterial cell membrane and eventually lead to bacterial death. Furthermore, attachment of phenolic compounds from olive leaf extract would promote membrane penetration by ZnO nanoparticles, resulting in the improvement of antibacterial activities, which profit from the green route mediated by Olea europaea leaf extract that could structure-tune ZnO nanocrystal clusters in one simple step that retains the active ingredients on the nanoparticles. This work proposes a feasible and clean strategy to improve the structure-bioactivity relationship of ZnO by controlling its growth into a preferable structure, and the developed ZnO clusters have a good prospect in antibacterial applications because of their excellent performance and green fabrication method.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Antibacterianos/química , Óxidos , Bactérias , Escherichia coli
5.
Metabolites ; 13(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36676926

RESUMO

L-tryptophan (L-TRP) is an essential amino acid for the normal growth of crustaceans. As a nutritional supplement and antioxidant, L-TRP has the function of immune and antioxidant capacity regulation. From July to November, the effects of L-TRP on the immunity, antioxidant capacity and intestinal microflora of the Chinese mitten crab (Eriocheir sinensis) in pond culture were investigated. After feeding an L-TRP diet for 30 (named as August), 60 (named as September) and 106 (named as November) days, respectively, the activities of the immune and antioxidant enzymes in the hepatopancreas and hemolymph were evaluated, and the intestinal microbiota were profiled via high-throughput Illumina sequencing. The results showed that supplementation of L-TRP significantly increased the activities of AKP in the hepatopancreas in September, and significantly increased the activities of ACP in the hepatopancreas in August and September, and the hemolymph's ACP activities also significantly increased in August and November (p < 0.05). Similarly, the activities of SOD, AOC and POD in the hepatopancreas significantly increased in September and November (p < 0.05) after feeding the L-TRP diet; meanwhile, the activities of SOD and AOC in the hemolymph also significantly increased in August (p < 0.05). However, in August, the L-TRP diet resulted in a significant increase in MDA activity in the hepatopancreas and hemolymph (p < 0.05). In addition, the results of the intestinal microbiota analysis showed that Firmicutes, Bacteroidetes and Proteobacteria were the dominant phyla in August, September and November, and Patescibacteria was the dominant phylum in September and November. After feeding the L-TRP diet, the richness of Cyanobacteria and Desulfobacterota significantly increased in August (p < 0.05), and the richness of Actinobacteriota significantly decreased in September (p < 0.05). Moreover, the L-TRP supplementation significantly reduced the abundance of ZOR0006 in the Firmicutes in September (p < 0.05). In conclusion, dietary L-TRP could improve the immunity and antioxidant ability and impact the intestinal health of E. sinensis at the early stage of pond culturing. However, long-term feeding of an L-TRP diet might have no positive impact on the activities of the immune, antioxidant enzymes and intestinal microbiota.

6.
Artigo em Inglês | MEDLINE | ID: mdl-34252579

RESUMO

Ammonia nitrogen pollution seriously affects the economic benefits of Chinese mitten crab (Eriocheir sinensis) farming. In this study, we first evaluated the protective effects of melatonin (MT) on immune parameters, antioxidant capacity, and digestive enzymes of E. sinensis under acute ammonia nitrogen stress. The results showed that ammonia-N stress significantly decreased the antibacterial ability of crabs, nevertheless MT could significantly improve it under ammonia-N stress (P < 0.05). Ammonia-N group hemolymph antioxidant capacity indicators (T-AOC, T-SOD, GSH-Px) were significantly decreased than control (p < 0.05), while the MT ammonia-N group hemolymph T-SOD activity significantly increased than ammonia-N group (p < 0.05). For hepatopancreas, ammonia-N group GSH-PX activity significantly decreased than control group, but MT ammonia-N group was significant increased than ammonia-N (p < 0.05). Ammonia-N stress has significantly increased the content of MDA in hemolymph and hepatopancreas (p < 0.05), but MT ammonia-N treatment significantly decreased than ammonia-N group (p < 0.05). Compared with the control group, ammonia-N significantly reduced the activities of Trypsin in the intestine and hepatopancreas (p < 0.05), while MT ammonia-N group can significantly improve the intestinal trypsin activity than ammonia-N (p < 0.05). The intestinal microbiota of E. sinensis results showed that ammonia-N stress significantly decreased the relative abundance of Bacteroidetes (p < 0.05). Ammonia-N stress significantly decreased the Dysgonomonas and Rubellimicrobium, and the Citrobacter significantly increased. In summary, melatonin has a protective effect on E. sinensis under ammonia-N stress. Acute ammonia-N stress may lead to the decrease of probiotics and the increase of pathogenic bacteria, which may be closely related to the impairment of digestive function and immune function.


Assuntos
Amônia/farmacologia , Braquiúros/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Melatonina/farmacologia , Ração Animal/análise , Animais , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Braquiúros/imunologia , Braquiúros/metabolismo , Braquiúros/microbiologia , Suplementos Nutricionais , Hemolinfa/efeitos dos fármacos , Hemolinfa/imunologia , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/imunologia , Hepatopâncreas/patologia , Imunidade Inata , Estresse Oxidativo , Substâncias Protetoras/farmacologia , Estresse Fisiológico/efeitos dos fármacos
7.
Stem Cell Res Ther ; 12(1): 41, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413612

RESUMO

BACKGROUND: Derivation of osteoblast-like cells from human pluripotent stem cells (hPSCs) is a popular topic in bone tissue engineering. Although many improvements have been achieved, the low induction efficiency because of spontaneous differentiation hampers their applications. To solve this problem, a detailed understanding of the osteogenic differentiation process of hPSCs is urgently needed. METHODS: Monolayer cultured human embryonic stem cells and human-induced pluripotent stem cells were differentiated in commonly applied serum-containing osteogenic medium for 35 days. In addition to traditional assays such as cell viability detection, reverse transcription-polymerase chain reaction, immunofluorescence, and alizarin red staining, we also applied studies of cell counting, cell telomerase activity, and flow cytometry as essential indicators to analyse the cell type changes in each week. RESULTS: The population of differentiated cells was quite heterogeneous throughout the 35 days of induction. Then, cell telomerase activity and cell cycle analyses have value in evaluating the cell type and tumourigenicity of the obtained cells. Finally, a dynamic map was made to integrate the analysis of these results during osteogenic differentiation of hPSCs, and the cell types at defined stages were concluded. CONCLUSIONS: Our results lay the foundation to improve the in vitro osteogenic differentiation efficiency of hPSCs by supplementing with functional compounds at the desired stage, and then establishing a stepwise induction system in the future.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Células Cultivadas , Humanos , Osteoblastos , Osteogênese
8.
Sci Rep ; 11(1): 4492, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627750

RESUMO

Chinese mitten crab (Eriocheir sinensis) as a commercially important species is widely cultured in China. However, E. sinensis is prone to agonistic behavior, which causes physical damage and wastes energy resources, negatively impacting their growth and survival. Therefore, understanding the regulatory mechanisms that underlie the switching of such behavior is essential for ensuring the efficient and cost-effective aquaculture of E. sinensis. The 5-HT2B receptor is a key downstream target of serotonin (5-HT), which is involved in regulating animal behavior. In this study, the full-length sequence of 5-HT2B gene was cloned. The total length of the 5-HT2B gene was found to be 3127 bp with a 236 bp 5'-UTR (untranslated region), a 779 bp 3'-UTR, and a 2112 bp open reading frame encoding 703 amino acids. Phylogenetic tree analysis revealed that the 5-HT2B amino acid sequence of E. sinensis is highly conserved with that of Cancer borealis. Using in vitro co-culture and luciferase assays, the miR-143 targets the 5-HT2B 3'-UTR and inhibits 5-HT2B expression was confirmed. Furthermore, RT-qPCR and Western blotting analyses revealed that the miR-143 mimic significantly inhibits 5-HT2B mRNA and protein expression. However, injection of miR-143 did not decrease agonistic behavior, indicating that 5-HT2B is not involved in the regulation of such behavior in E. sinensis.


Assuntos
Comportamento Agonístico/fisiologia , Braquiúros/genética , MicroRNAs/genética , Serotonina/genética , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , China , Clonagem Molecular , DNA Complementar/genética , Perfilação da Expressão Gênica/métodos , Fases de Leitura Aberta/genética , Filogenia , RNA Mensageiro/genética , Alinhamento de Sequência
9.
Front Genet ; 11: 321, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391050

RESUMO

As a commercially important species, the Chinese mitten crab (Eriocheir sinensis) has been cultured for a long time in China. Agonistic behavior often causes limb disability and requires much energy, which is harmful to the growth and survival of crabs. In this paper, we divided crabs into a control group (control, no treatment) and an experimental group (fight, agonistic behavior after 1 h) and then collected the thoracic ganglia (TG) to extract RNA. Subsequently, we first used a deep sequencing approach to examine the transcripts of microRNAs (miRNAs) and messenger RNAs (mRNAs) in E. sinensis displaying agonistic behavior. According to the results, we found 29 significant differentially expressed miRNAs (DEMs) and 116 significant differentially expressed unigenes (DEGs). The DEMs esi-miR-199a-5p, esi-let-7d, esi-miR-200a, and esi-miR-200b might participate in the regulation of agonistic behavior by mediating neuroregulation and energy metabolism. Focusing on the transcripts of the mRNAs, the renin-angiotensin system (RAS) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway might be involved in the regulation of agonistic behavior through glucose metabolism as this pathway was significantly enriched with DEGs. Besides, an integrated analysis of the miRNA and mRNA profiles revealed that the retinoid X receptor (RXR) was also involved in visual signal transduction, which was important for agonistic behavior. In addition, four vital agonistic behavior-related metabolic pathways, including the cAMP signaling, MAPK, protein digestion and absorption, and fatty acid metabolism pathways, were significantly enriched with the predicted target unigenes. In conclusion, the findings of this study might provide important insight enhancing our understanding of the underlying molecular mechanisms of agonistic behavior in E. sinensis.

10.
Artigo em Inglês | MEDLINE | ID: mdl-32777465

RESUMO

Glyphosate is one of the most widely used pesticides, which can cause toxicity to aquatic animals. In this study, the survival rate, immune response, digestive enzyme activities, and the intestinal microbiota diversity of Chinese mitten crab (Eriocheir sinensis) were evaluated after 14 days of exposure to glyphosate (48.945 mg/L from 50% 96 h LC50 value) and melatonin feeding (80 mg/kg). The results showed that MT significantly improved the survival rate, antibacterial capacity of E. sinensis (P < 0.05). After exposure to glyphosate, the expression of Hsp60, Hsp70 and Hsp90 in cranial ganglia and thoracic ganglia was decreased significantly, but MT significantly raised the expression of these proteins (P < 0.05). Glyphosate significantly decreased lipase activity compared with the control group (P < 0.05), while melatonin significantly increased the lipase, amylase and trypsin activities (P < 0.05). Melatonin significantly increased the Chao1 and Shannon index and the relative abundance of Proteobacteria and Bacteroidetes (P < 0.05). This study shows that melatonin has a protective effect on the glyphosate exposed E. sinensis.


Assuntos
Braquiúros/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Glicina/análogos & derivados , Melatonina/farmacologia , Substâncias Protetoras/farmacologia , Amilases/metabolismo , Animais , Antioxidantes/farmacologia , Biodiversidade , Braquiúros/enzimologia , Braquiúros/crescimento & desenvolvimento , Braquiúros/imunologia , Interações Medicamentosas , Glicina/toxicidade , Imunidade Inata/efeitos dos fármacos , Lipase/metabolismo , Distribuição Aleatória , Tripsina/metabolismo , Glifosato
11.
Aquat Toxicol ; 214: 105243, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31319294

RESUMO

Glyphosate is one of the most widely used pesticides in the world and can be transported easily by surface runoff, air, and rivers, potentially affecting aquaculture. In this study, the survival rate, intestinal and hepatopancreatic immune and digestive functions, and the intestinal microbial diversity of Chinese mitten crab (Eriocheir sinensis) were evaluated after 7 days of exposure to glyphosate (48.945 mg/L from 1/2 96-h LC50 value). The results showed that glyphosate significantly reduced the survival rate of E. sinensis. After exposure to glyphosate, the totoal antioxidant capacity (T-AOC) in the midgut and hindgut of E. sinensis was significantly decreased, and malondialdehyde (MDA) content in the midgut was significantly increased (P < 0.05). After glyphosate exposure, the activities of digestive enzymes (including lipase and amylase) in the intestinal tract were significantly decreased and trypsin was significantly increased, while three enzymes in the hepatopancreas were significantly increased (P < 0.05). Using high-throughput sequencing analysis of the gut microbiota, the results showed that glyphosate significantly decreased the diversity of E. sinensis gut microbiota, while significantly increasing the taxonomic richness of Bacteroidetes and Proteobacteria (P < 0.05). This study suggested that these bacteria may be involved in glyphosate effects on survival by regulation of immune and digestive function.


Assuntos
Braquiúros/imunologia , Braquiúros/microbiologia , Digestão/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Imunidade Inata/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Sequência de Bases , Biodiversidade , Braquiúros/efeitos dos fármacos , Braquiúros/enzimologia , Análise Discriminante , Glicina/toxicidade , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/enzimologia , Hepatopâncreas/microbiologia , Intestinos/efeitos dos fármacos , Intestinos/enzimologia , Intestinos/microbiologia , Análise dos Mínimos Quadrados , Filogenia , Análise de Componente Principal , Poluentes Químicos da Água/toxicidade , Glifosato
12.
ACS Chem Neurosci ; 10(11): 4502-4510, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31642670

RESUMO

The Chinese mitten crab (Eriocheir sinensis) is a commercially important crab in China and is usually managed at high stocking densities. Agonistic behavior directly impacts crab integrity, survival, and growth and results in economic losses. In the present study, we evaluated the modulatory effects of serotonin (5-HT) and dopamine (DA) though the 5-HT2 and DA2 receptor-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway on agonistic behavior. The results showed that injection of either 10-6 mol/crab 5-HT or DA reduced the agonistic behavior of E. sinensis (P < 0.05), as did 10-10 mol/crab DA and 10-8 mol/crab 5-HT and DA (P < 0.05); however, a dose of 10-10 mol/crab 5-HT promoted agonistic behavior. 5-HT significantly increased the mRNA expression level of 5-HT7 receptor and reduced that of the DA2 receptor in the cerebral ganglion (P < 0.05). In contrast to 5-HT, DA significantly decreased 5-HT2B mRNA levels and increased 5-HT7 and DA2 receptor levels in the thoracic ganglia (P < 0.05). In addition, injections of either 5-HT or DA increased the cAMP and PKA levels in hemolymph (P < 0.05). By using in vitro culture of the thoracic ganglia, the current study showed that ketanserin (5-HT2 antagonist) and [R(-)-TNPA] (DA2 agonist) had obvious effects on the expression levels of the two receptors (P < 0.05). In vivo experiments further demonstrated that ketanserin and [R(-)-TNPA] could both significantly reduce the agonistic behavior of the crabs (P < 0.05). Furthermore, both ketanserin and [R(-)-TNPA] promoted the cAMP and PKA levels (P < 0.05). The injection of CPT-cAMP (cAMP analogue) elevated the PKA levels and inhibited agonistic behavior. In summary, this study showed that 5HT-2B and DA2 receptors were involved in the agonistic behavior that 5-HT/DA induced through the cAMP-PKA pathway in E. sinensis.


Assuntos
Comportamento Agonístico/fisiologia , Dopamina/farmacologia , Receptor 5-HT1B de Serotonina/fisiologia , Receptores de Dopamina D2/fisiologia , Receptores de Serotonina/fisiologia , Serotonina/farmacologia , Comportamento Agonístico/efeitos dos fármacos , Animais , Braquiúros , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Masculino , Receptores de Dopamina D2/agonistas , Antagonistas da Serotonina/farmacologia
13.
Physiol Behav ; 209: 112621, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31323296

RESUMO

Agonistic behaviour is common in an encounter between two crustaceans. It often causes limb disability and consumes a lot of energy, which is harmful for the growth and survival of commercially important crustaceans. In the present study, we mainly focused on the agonistic behaviour of the Chinese mitten crab, Eriocheir sinensis, which is an important species of the aquaculture industry in China. We recorded agnostic behaviour with a high-definition camera and preliminarily evaluated the role of serotonin (5-HT) or dopamine (DA)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway and eyestalk in the behaviour. The results showed that agonistic behaviour in E. sinensis consisted of three stages: approach, contact and fight. We found that the number of fights and cumulative time of fight were significantly higher in the male vs. male group than in the female vs. female and female vs. male groups (P < 0.05). After 1 h of agonistic behaviour, 5-HT concentration showed a significant increase and DA concentration showed a significant decrease when compared with the control group (no encounter; P < 0.05). 5-HT1B and 5-HT2B mRNA levels showed a significant increase in the eyestalk (P < 0.05). 5-HT7 mRNA levels showed significant downregulation in the thoracic ganglia and DA1A mRNA levels showed upregulation in the intestine (P < 0.05). DA2 mRNA levels showed a significant decrease in the eyestalk (P < 0.05). These changes were accompanied by a significant increase in cAMP level and significant decrease in PKA level in the haemolymph (P < 0.05). In addition, a significant decrease in glucose levels was detected after the agonistic behaviour. Crustacean hyperglycemic hormone (CHH) mRNA levels showed significant upregulation in the eyestalk and significant downregulation in the intestine (P < 0.05). The number of fights and cumulative time of fight in the left eyestalk ablation (L-X vs. L-X) group were more and longer than those in the intact eyestalk (C vs. C), right eyestalk ablation (R-X vs. R-X) and bilateral eyestalk ablation (D-X vs. D-X) groups. In short, E. sinensis shows special agonistic behaviour modulated by 5-HT or DA-cAMP-PKA pathway and eyestalk, especially the left eyestalk.


Assuntos
Comportamento Agonístico/fisiologia , Braquiúros/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , AMP Cíclico/fisiologia , Dopamina/fisiologia , Serotonina/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas de Artrópodes/biossíntese , Proteínas de Artrópodes/metabolismo , Feminino , Glucose/metabolismo , Hemolinfa/metabolismo , Hormônios de Invertebrado/biossíntese , Hormônios de Invertebrado/metabolismo , Masculino , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/metabolismo , Receptores Dopaminérgicos/biossíntese , Receptores Dopaminérgicos/metabolismo , Receptores de Serotonina
14.
Sci Total Environ ; 653: 1426-1434, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30759581

RESUMO

Deltamethrin (Del), an important broad-spectrum insecticide, is widely used in agricultural activities. However, Del is an effective reactive oxygen species (ROS) inducer that induces oxidative stress damage in cells or tissues. Del is significantly more toxic to aquatic organisms, especially crustaceans, than to mammals and birds. This study was designed to evaluate the protective effect of melatonin (MT) on the toxicity-induced damage of Del after 6 h in Eriocheir sinensis. The results showed that Del exposure significantly induced oxidative damage in the hepatopancreas and mitochondria, with malondialdehyde (MDA) and glutathione (GSH) levels being significantly increased and superoxide dismutase (SOD) activity being significantly decreased. Moreover, Del exposure significantly induced functional damage of the hepatopancreas and mitochondria, with a significant increase in alanine aminotransferase (ALT), aspartate aminotransferase (AST), acid phosphatase (ACP) and alkaline phosphatase (AKP) activities in the hepatopancreas and the ratio of albumin/globulin (ALB/GLB) in serum, which indicated the permeability and integrity of the membranes were damaged and had caused cell damage. In addition, ATP content, Na+-K+-ATPase activity and cytochrome C (Cyt­C) content in mitochondria decreased significantly, which indicated that Del exposure destroyed the normal respiratory chain of mitochondria. We also evaluated the hematological parameters. Although there were no significant differences in total hemocyte count (THC) levels, hemocyte apoptosis was significantly induced by Del exposure, and the hemocyte phagocytic activity and the hemocyanin levels decreased significantly with Del exposure. However, MT pretreatment not only prevented oxidative damage and functional damage caused by Del exposure to the hepatopancreas and mitochondria, but it also restored the hemocyte apoptotic rate and phagocytic activity to normal levels. In short, Del exposure caused significant oxidative and functional damage to the hepatopancreas, mitochondria and hemocytes of E. sinensis, whereas the use of MT almost completely eliminated the damage caused by Del exposure.


Assuntos
Braquiúros/efeitos dos fármacos , Inseticidas/toxicidade , Melatonina/farmacologia , Nitrilas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Piretrinas/toxicidade , Fosfatase Ácida/metabolismo , Alanina Transaminase/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Braquiúros/imunologia , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/metabolismo , Hepatopâncreas/patologia , Sistema Imunitário/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade
15.
Front Immunol ; 9: 2744, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30574139

RESUMO

In pond cultures of juvenile Eriocheir sinensis, limb autotomy stress seriously affects and restricts the quality and economic benefits of aquaculture. This study was designed to evaluate the effects of dietary supplementation of L-tryptophan on E. sinensis under the cheliped autotomy stress. In the present study, 252 crabs were divided into four groups: dietary L-trp supplementation with 0.28, 0.40, 0.53, and 0.70%, and their hematological immunity, antioxidant capacity, anti-stress, and antibacterial ability were evaluated after 14 days of using biochemical analysis, flow cytometry, and molecular biology techniques. First, we counted the mortality after 14 days of feeding and found that compared with other treatments, dietary supplementation of 0.53 and 0.70% L-trp significantly lowered the mortality of E. sinensis. Moreover, the total hemocyte count (THC), hemocyanin, and glutathione (GSH) content, and glutathione peroxidase (GSH-Px) activity significantly increased at 7 and 14 d with dietary supplementation of 0.53 and 0.70% L-trp, in contrast with the significant decrease in malondialdehyde (MDA) content at 14 d in the same dietary groups (P<0.05). Next, the bacterial challenge test after 14 days of feeding showed that the THC levels, phagocytic rate, and acid phosphatase (ACP) and alkaline phosphatase (ALP) activity were significantly higher with dietary supplementation of 0.53 and 0.70% L-trp after 12 and 24 h of Aeromonas hydrophila injection, along with a significant improvement in the antioxidant capacity (P<0.05). Further, we measured the expression of antibacterial-related protein genes (EslecB and HSP 90) and found that they were significant up-regulated in the hepatopancreas, hemocytes, intestine, and gill in the groups with dietary supplementation of 0.53% and 0.70% L-trp after 12 h or 24 h of A. hydrophila injection (P<0.05). Taken together, the observations in this study indicate that dietary supplementation of L-trp can enhance the antioxidant capacity and improve the hematological immune status and antibacterial ability of E. sinensis under the cheliped autotomy stress, thereby increasing the survival rate of E. sinensis under cheliped autotomy stress.


Assuntos
Aeromonas hydrophila/imunologia , Antioxidantes/farmacologia , Braquiúros/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Estresse Fisiológico , Triptofano/farmacologia , Animais , Braquiúros/microbiologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA