RESUMO
Inorganic superionic conductors possess high ionic conductivity and excellent thermal stability but their poor interfacial compatibility with lithium metal electrodes precludes application in all-solid-state lithium metal batteries1,2. Here we report a LaCl3-based lithium superionic conductor possessing excellent interfacial compatibility with lithium metal electrodes. In contrast to a Li3MCl6 (M = Y, In, Sc and Ho) electrolyte lattice3-6, the UCl3-type LaCl3 lattice has large, one-dimensional channels for rapid Li+ conduction, interconnected by La vacancies via Ta doping and resulting in a three-dimensional Li+ migration network. The optimized Li0.388Ta0.238La0.475Cl3 electrolyte exhibits Li+ conductivity of 3.02 mS cm-1 at 30 °C and a low activation energy of 0.197 eV. It also generates a gradient interfacial passivation layer to stabilize the Li metal electrode for long-term cycling of a Li-Li symmetric cell (1 mAh cm-2) for more than 5,000 h. When directly coupled with an uncoated LiNi0.5Co0.2Mn0.3O2 cathode and bare Li metal anode, the Li0.388Ta0.238La0.475Cl3 electrolyte enables a solid battery to run for more than 100 cycles with a cutoff voltage of 4.35 V and areal capacity of more than 1 mAh cm-2. We also demonstrate rapid Li+ conduction in lanthanide metal chlorides (LnCl3; Ln = La, Ce, Nd, Sm and Gd), suggesting that the LnCl3 solid electrolyte system could provide further developments in conductivity and utility.
RESUMO
While the existence and functional role of class C G-protein-coupled receptors (GPCR) dimers is well established, there is still a lack of consensus regarding class A and B GPCR multimerization. This lack of consensus is largely due to the inherent challenges of demonstrating the presence of multimeric receptor complexes in a physiologically relevant cellular context. The C-X-C motif chemokine receptor 4 (CXCR4) is a class A GPCR that is a promising target of anticancer therapy. Here, we investigated the potential of CXCR4 to form multimeric complexes with other GPCRs and characterized the relative size of the complexes in a live-cell environment. Using a bimolecular fluorescence complementation (BiFC) assay, we identified the ß2 adrenergic receptor (ß2AR) as an interaction partner. To investigate the molecular scale details of CXCR4-ß2AR interactions, we used a time-resolved fluorescence spectroscopy method called pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). PIE-FCCS can resolve membrane protein density, diffusion, and multimerization state in live cells at physiological expression levels. We probed CXCR4 and ß2AR homo- and heteromultimerization in model cell lines and found that CXCR4 assembles into multimeric complexes larger than dimers in MDA-MB-231 human breast cancer cells and in HCC4006 human lung cancer cells. We also found that ß2AR associates with CXCR4 multimers in MDA-MB-231 and HCC4006 cells to a higher degree than in COS-7 and CHO cells and in a ligand-dependent manner. These results suggest that CXCR4-ß2AR heteromers are present in human cancer cells and that GPCR multimerization is significantly affected by the plasma membrane environment.
Assuntos
Neoplasias , Receptores Adrenérgicos beta 2 , Receptores CXCR4 , Transdução de Sinais , Animais , Cricetinae , Humanos , Células CHO , Cricetulus , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Receptores CXCR4/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Multimerização ProteicaRESUMO
Angiogenesis is vital to developmental, regenerative and repair processes. It is normally regulated by a balanced production of pro- and anti-angiogenic factors. Alterations in this balance under pathological conditions are generally mediated through up-regulation of pro-angiogenic and/or downregulation of anti-angiogenic factors, leading to growth of new and abnormal blood vessels. The pathological manifestation of many diseases including cancer, ocular and vascular diseases are dependent on the growth of these new and abnormal blood vessels. Thrompospondin-1 (TSP1) was the first endogenous angiogenesis inhibitor identified and its anti-angiogenic and anti-inflammatory activities have been the subject of many studies. Studies examining the role TSP1 plays in pathogenesis of various ocular diseases and vascular dysfunctions are limited. Here we will discuss the recent studies focused on delineating the role TSP1 plays in ocular vascular development and homeostasis, and pathophysiology of various ocular and vascular diseases with a significant clinical relevance to human health.
Assuntos
Neoplasias , Doenças Vasculares , Humanos , Neoplasias/patologia , Neovascularização Patológica/patologiaRESUMO
The pathogenesis of acute lung injury is not fully understood. Stimulator of interferon genes (STING) and ferroptosis have been implicated in various pathological and physiological processes, including acute lung injury (ALI). However, the relationship between STING and ferroptosis in lipopolysaccharide (LPS)-induced ALI is unclear. We found that LPS stimulation activated STING and ferroptosis. Furthermore, STING knockout and ferroptosis inhibitor alleviated lung inflammation and epithelial cell damage. Also, STING knockout reduced inflammation injury and ferroptosis. Notably, the ferroptosis inducer reversed the alleviation of inflammation caused by STING knockout. These results show that STING participates in the inflammation injury of ALI by regulating ferroptosis. Results also showed that p-STAT3 levels increased after STING knockout, suggesting that STING negatively regulates STAT3 activation. Besides, STAT3 inhibitor aggravated ferroptosis after STING knockout, indicating that STING regulates ferroptosis through STAT3 signaling. In conclusion, STING mediates LPS-induced ALI by regulating ferroptosis, indicating that STING and ferroptosis may be new targets for ALI treatment.
Assuntos
Lesão Pulmonar Aguda , Ferroptose , Lipopolissacarídeos , Proteínas de Membrana , Fator de Transcrição STAT3 , Animais , Humanos , Masculino , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genéticaRESUMO
Ovarian cancer is one of the most lethal female cancers. For accurate prognosis prediction, this study aimed to investigate novel, blood-based prognostic biomarkers for high-grade serous ovarian carcinoma (HGSOC) using mass spectrometry-based proteomics methods. We conducted label-free liquid chromatography-tandem mass spectrometry using frozen plasma samples obtained from patients with newly diagnosed HGSOC (n = 20). Based on progression-free survival (PFS), the samples were divided into two groups: good (PFS ≥18 months) and poor prognosis groups (PFS <18 months). Proteomic profiles were compared between the two groups. Referring to proteomics data that we previously obtained using frozen cancer tissues from chemotherapy-naïve patients with HGSOC, overlapping protein biomarkers were selected as candidate biomarkers. Biomarkers were validated using an independent set of HGSOC plasma samples (n = 202) via enzyme-linked immunosorbent assay (ELISA). To construct models predicting the 18-month PFS rate, we performed stepwise selection based on the area under the receiver operating characteristic curve (AUC) with 5-fold cross-validation. Analysis of differentially expressed proteins in plasma samples revealed that 35 and 61 proteins were upregulated in the good and poor prognosis groups, respectively. Through hierarchical clustering and bioinformatic analyses, GSN, VCAN, SND1, SIGLEC14, CD163, and PRMT1 were selected as candidate biomarkers and were subjected to ELISA. In multivariate analysis, plasma GSN was identified as an independent poor prognostic biomarker for PFS (adjusted hazard ratio, 1.556; 95% confidence interval, 1.073-2.256; p = 0.020). By combining clinical factors and ELISA results, we constructed several models to predict the 18-month PFS rate. A model consisting of four predictors (FIGO stage, residual tumor after surgery, and plasma levels of GSN and VCAN) showed the best predictive performance (mean validated AUC, 0.779). The newly developed model was converted to a nomogram for clinical use. Our study results provided insights into protein biomarkers, which might offer clues for developing therapeutic targets.
Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Proteômica , Biomarcadores Tumorais , Cistadenocarcinoma Seroso/diagnóstico , Neoplasias Ovarianas/patologia , Proteínas Sanguíneas , Proteína-Arginina N-Metiltransferases , Proteínas Repressoras , EndonucleasesRESUMO
G protein-coupled receptors (GPCRs) play crucial roles in numerous physiological and pathological processes. Mutations in GPCRs that result in loss of function or alterations in signaling can lead to inherited or acquired diseases. Herein, studying prokineticin receptor 2 (PROKR2), we initially identify distinct interactomes for wild-type (WT) versus a mutant (P290S) PROKR2 that causes hypogonadotropic hypogonadism. We then find that both the WT and mutant PROKR2 are targeted for endoplasmic reticulum (ER)-associated degradation, but the mutant is degraded to a greater extent. Further analysis revealed that both forms can also leave the ER to reach the Golgi. However, whereas most of the WT is further transported to the cell surface, most of the mutant is retrieved to the ER. Thus, the post-ER itinerary plays an important role in distinguishing the ultimate fate of the WT versus the mutant. We have further discovered that this post-ER itinerary reduces ER stress induced by the mutant PROKR2. Moreover, we extend the core findings to another model GPCR. Our findings advance the understanding of disease pathogenesis induced by a mutation at a key residue that is conserved across many GPCRs and thus contributes to a fundamental understanding of the diverse mechanisms used by cellular quality control to accommodate misfolded proteins.
Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Proteostase/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático , Complexo de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Hipogonadismo/metabolismo , Mutação de Sentido Incorreto/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Transdução de SinaisRESUMO
Chiral perovskites play a pivotal role in spintronics and optoelectronic systems attributed to their chiral-induced spin selectivity (CISS) effect. Specifically, they allow for spin-polarized charge transport in spin light-emitting diodes (LEDs), yielding circularly polarized electroluminescence at room temperature without external magnetic fields. However, chiral lead bromide-based perovskites have yet to achieve high-performance green emissive spin-LEDs, owing to limited CISS effects and charge transport. Herein, we employ dimensional regulation and Sn2+-doping to optimize chiral bromide-based perovskite architecture for green emissive spin-LEDs. The optimized (PEA)x(S/R-PRDA)2-xSn0.1Pb0.9Br4 chiral perovskite film exhibits an enhanced CISS effect, higher hole mobility, and better energy level alignment with the emissive layer. These improvements allow us to fabricate green emissive spin-LEDs with an external quantum efficiency (EQE) of 5.7% and an asymmetry factor |gCP-EL| of 1.1 × 10-3. This work highlights the importance of tailored perovskite architectures and doping strategies in advancing spintronics for optoelectronic applications.
RESUMO
Ovarian cancer is a lethal gynecologic cancer mostly diagnosed in an advanced stage with an accumulation of ascites. Interleukin-6 (IL-6), a pro-inflammatory cytokine is highly elevated in malignant ascites and plays a pleiotropic role in cancer progression. Mitochondria are dynamic organelles that undergo fission and fusion in response to external stimuli and dysregulation in their dynamics has been implicated in cancer progression and metastasis. Here, we investigate the effect of IL-6 on mitochondrial dynamics in ovarian cancer cells (OVCs) and its impact on metastatic potential. Treatment with IL-6 on ovarian cancer cell lines (SKOV3 and PA-1) led to an elevation in the metastatic potential of OVCs. Interestingly, a positive association was observed between dynamin-related protein 1 (Drp1), a regulator of mitochondrial fission, and IL-6R in metastatic ovarian cancer tissues. Additionally, IL-6 treatment on OVCs was linked to the activation of Drp1, with a notable increase in the ratio of the inhibitory form p-Drp1(S637) to the active form p-Drp1(S616), indicating enhanced mitochondrial fission. Moreover, IL-6 treatment triggered the activation of ERK1/2, and inhibiting ERK1/2 mitigated IL-6-induced mitochondrial fission. Suppressing mitochondrial fission through siRNA transfection and a pharmacological inhibitor reduced the IL-6-induced migration and invasion of OVCs. This was further supported by 3D invasion assays using patient-derived spheroids. Altogether, our study suggests the role of mitochondrial fission in the metastatic potential of OVCs induced by IL-6. The inhibition of mitochondrial fission could be a potential therapeutic approach to suppress the metastasis of ovarian cancer.
Assuntos
Dinaminas , Interleucina-6 , Sistema de Sinalização das MAP Quinases , Dinâmica Mitocondrial , Neoplasias Ovarianas , Humanos , Feminino , Dinâmica Mitocondrial/efeitos dos fármacos , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Interleucina-6/metabolismo , Dinaminas/metabolismo , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metástase Neoplásica , Mitocôndrias/metabolismo , Receptores de Interleucina-6/metabolismo , Movimento Celular/efeitos dos fármacosRESUMO
INTRODUCTION: Numerous randomized controlled trials (RCTs) have investigated PD-1/PD-L1 inhibitor-based combination therapies. The debate surrounding the potential additive clinical benefits of combination of two immune-oncology (IO) therapies for cancer patients persists. METHODS: Both published and grey sources of randomized clinical trials that compared anti-PD-1/PD-L1-based immunotherapy combinations with monotherapy in patients with advanced or metastatic solid tumors were encompassed. The primary outcome was progression-free survival (PFS), and secondary outcomes included objective response rate (ORR), overall survival (OS) and treatment-related adverse events (TRAEs). RESULTS: Our analysis encompassed 31 studies comprising 10,341 patients, which covered 12 distinct immune-oncology combination regimens. Across all patients, the immunotherapy combinations exhibited the capability to enhance the ORR (OR = 1.23 [95% CI 1.13-1.34]) and extend PFS (HR = 0.91 [95% CI 0.87-0.95]). However, the observed enhancement in OS (HR = 0.96 [95% CI 0.91-1.01]) was of no significance. Greater benefits in terms of PFS (HR = 0.82 [95% CI 0.72 to 0.93]) and OS (HR = 0.85 [95% CI 0.73 to 0.99]) may be particularly pronounced in cases where PD-L1 expression is negative. Notably, despite a heightened risk of any-grade TRAEs (OR = 1.72 [95% CI 1.40-2.11]) and grade greater than or equal to 3 TRAEs (OR = 2.01 [95% CI 1.67-2.43]), toxicity was generally manageable. CONCLUSIONS: This study suggests that incorporating an additional immunotherapy agent with PD-1/PD-L1 inhibitors can elevate the response rate and reduce the risk of disease progression, all while maintaining manageable toxicity. However, there remains a challenge in translating these primary clinical benefits into extended overall survival.
Assuntos
Antígeno B7-H1 , Inibidores de Checkpoint Imunológico , Imunoterapia , Neoplasias , Receptor de Morte Celular Programada 1 , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Antígeno B7-H1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos , Imunoterapia/métodos , Imunoterapia/efeitos adversos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
BACKGROUND: Small cell lung cancer (SCLC) is a highly aggressive neuroendocrine tumor with high mortality, and only a limited subset of extensive-stage SCLC (ES-SCLC) patients demonstrate prolonged survival under chemoimmunotherapy, which warrants the exploration of reliable biomarkers. Herein, we built a machine learning-based model using pathomics features extracted from hematoxylin and eosin (H&E)-stained images to classify prognosis and explore its potential association with genomics and TIME. METHODS: We retrospectively recruited ES-SCLC patients receiving first-line chemoimmunotherapy at Nanjing Jinling Hospital between April 2020 and August 2023. Digital H&E-stained whole-slide images were acquired, and targeted next-generation sequencing, programmed death ligand-1 staining, and multiplex immunohistochemical staining for immune cells were performed on a subset of patients. A random survival forest (RSF) model encompassing clinical and pathomics features was established to predict overall survival. The function of putative genes was assessed via single-cell RNA sequencing. RESULTS AND CONCLUSION: During the median follow-up period of 12.12 months, 118 ES-SCLC patients receiving first-line immunotherapy were recruited. The RSF model utilizing three pathomics features and liver metastases, bone metastases, smoking status, and lactate dehydrogenase, could predict the survival of first-line chemoimmunotherapy in patients with ES-SCLC with favorable discrimination and calibration. Underlyingly, the higher RSF-Score potentially indicated more infiltration of CD8+ T cells in the stroma as well as a greater probability of MCL-1 amplification and EP300 mutation. At the single-cell level, MCL-1 was associated with TNFA-NFKB signaling and apoptosis-related processes. Hopefully, this noninvasive model could act as a biomarker for immunotherapy, potentially facilitating precision medicine in the management of ES-SCLC.
Assuntos
Genômica , Imunoterapia , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Masculino , Prognóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Feminino , Imunoterapia/métodos , Pessoa de Meia-Idade , Genômica/métodos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/imunologia , Carcinoma de Pequenas Células do Pulmão/terapia , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/mortalidade , Estudos Retrospectivos , Biomarcadores Tumorais/genética , Idoso , AdultoRESUMO
Silicon (Si) anodes, free from the dendritic growth concerns found in lithium (Li) metal anodes, offer a promising alternative for high-energy all-solid-state batteries (ASSBs). However, most advancements in Si anodes have been achieved under impractical high operating pressures, which can mask detrimental electrochemo-mechanical issues. Herein, we effectively address the challenges related to the low-pressure operation of Si anodes in ASSBs by introducing an silver (Ag) interlayer between the solid electrolyte layer (Li6PS5Cl) and anode and prelithiating the anodes. The Si composite electrodes, consisting of Si/polyvinylidene fluoride/carbon nanotubes, are optimized for suitable mechanical properties and electrical connectivity. Although the impact of the Ag interlayer is insignificant at an exceedingly high operating pressure of 70 MPa, it substantially enhances the interfacial contacts under a practical low operating pressure of 15 MPa. Thus, Ag-coated Si anodes outperform bare Si anodes (discharge capacity: 2430 vs 1560 mA h g-1). The robust interfacial contact is attributed to the deformable, adhesive properties and protective role of the in situ lithiated Ag interlayer, as evidenced by comprehensive ex situ analyses. Operando electrochemical pressiometry is used effectively to probe the strong interface for Ag-coated Si anodes. Furthermore, prelithiation through the thermal evaporation deposition of Li metal significantly improves the cycling performance.
RESUMO
In mammals, the endometrium undergoes dynamic changes in response to estrogen and progesterone to prepare for blastocyst implantation. Two distinct types of endometrial epithelial cells, the luminal (LE) and glandular (GE) epithelial cells play different functional roles during this physiological process. Previously, we have reported that Notch signaling plays multiple roles in embryo implantation, decidualization, and postpartum repair. Here, using the uterine epithelial-specific Ltf-iCre, we showed that Notch1 signaling over-activation in the endometrial epithelium caused dysfunction of the epithelium during the estrous cycle, resulting in hyper-proliferation. During pregnancy, it further led to dysregulation of estrogen and progesterone signaling, resulting in infertility in these animals. Using 3D organoids, we showed that over-activation of Notch1 signaling increased the proliferative potential of both LE and GE cells and reduced the difference in transcription profiles between them, suggesting disrupted differentiation of the uterine epithelium. In addition, we demonstrated that both canonical and non-canonical Notch signaling contributed to the hyper-proliferation of GE cells, but only the non-canonical pathway was involved with estrogen sensitivity in the GE cells. These findings provided insights into the effects of Notch1 signaling on the proliferation, differentiation, and function of the uterine epithelium. This study demonstrated the important roles of Notch1 signaling in regulating hormone response and differentiation of endometrial epithelial cells and provides an opportunity for future studies in estrogen-dependent diseases, such as endometriosis.
Assuntos
Progesterona , Útero , Animais , Feminino , Camundongos , Gravidez , Proliferação de Células , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Epitélio/metabolismo , Estrogênios/farmacologia , Estrogênios/metabolismo , Progesterona/farmacologia , Progesterona/metabolismo , Útero/metabolismoRESUMO
Although crystalline metal-organic frameworks (MOFs) have gained a great deal of interest in the field of proton conduction in recent years, the low stability and poor proton conductivity (σ) of some MOFs have hindered their future applications. As a result, resolving the issues listed above must be prioritized. Due to their exceptional structural stability, MOFs with ferrocene groups that exhibit particular physical and chemical properties have drawn a lot of attention. This study describes the effective preparation of a set of three-dimensional ferrocene-based MOFs, MIL-53-FcDC-Al/Ga and CAU-43, containing both main group metals and 1,1'-ferrocene dicarboxylic acid (H2FcDC). Multiple measurements, including powder X-ray diffraction (PXRD), infrared (IR), and scanning electron microscopy (SEM), confirmed that the addition of ferrocene groups enhanced the thermal, water, and acid-base stabilities of the three MOFs. Consequently, their proton-conductive behaviors were meticulously measured utilizing the AC impedance approach, and their best proton conductivities are 5.20 × 10-3, 2.31 × 10-3, and 1.72 × 10-4 S/cm at 100 °C/98% relative humidity (RH), respectively. Excitingly, MIL-53-FcDC-Al/Ga demonstrated an extraordinarily ultrahigh σ of above 10-4 S·cm-1 under 30 °C/98% RH. Using data from structural analysis, PXRD, SEM, thermogravimetry (TG), and activation energy, their proton transport mechanisms were thoroughly examined. The fact that these MOFs are notably easy to assemble, inexpensive, toxin-free, and stable will increase the range of practical uses for them.
RESUMO
Indium-based metal-organic frameworks (In-MOFs) have now become an attractive class of porous solids in materials science and electrochemistry due to their diverse structures and promising applications. In the field of proton conduction, to find more crystalline MOFs with splendid proton-conductive properties, herein, five three-dimensional isostructural In-MOFs, MIL-68-In or MIL-68-In-X (X = NH2, OH, Br, or NO2) using terephthalic acid (H2BDC) or functionalized terephthalic acids (H2BDC-X) as multifunctional linkages were efficiently fabricated. First, the outstanding structural stability of the five MOFs, including thermal and water stability, was verified by thermal analysis and powder X-ray diffraction. Subsequently, the H2O-mediated proton conductivities (σ) were fully assessed and compared. Notably, their σ evinced a significant positive correlation between the temperature or relative humidity (RH) and varied with the functional groups on the organic ligands. Impressively, their highest σ values are up to 10-3-10-4 S/cm (100 °C/98% RH) and change in this order: MIL-68-In-OH (1.72 × 10-3 S/cm) > MIL-68-In-NH2 (1.70 × 10-3 S/cm) > MIL-68-In-NO2 (4.47 × 10-4 S/cm) > MIL-68-In-Br (4.11 × 10-4 S/cm) > MIL-68-In (2.37 × 10-4 S/cm). Finally, the computed activation energy values under 98 or 68% RHs are assessed, and the related proton conduction mechanisms are speculated. Moreover, after electrochemical testing, these MOFs illustrate remarkable structural rigidity, laying a meritorious material foundation for future applications.
RESUMO
BACKGROUND: Over a dozen vaccines are in or have completed phase III trials at an unprecedented speed since the World Health Organization (WHO) declared COVID-19 a pandemic. In this review, we aimed to compare and rank these vaccines indirectly in terms of efficacy and safety using a network meta-analysis. METHODS: We searched Embase, MEDLINE, and the Cochrane Library for phase III randomized controlled trials (RCTs) from their inception to September 30, 2023. Two investigators independently selected articles, extracted data, and assessed the risk of bias. Outcomes included efficacy in preventing symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the incidence of serious adverse events (SAEs) according to vaccine type and individual vaccines in adults and elderly individuals. The risk ratio and mean differences were calculated with 95% confidence intervals using a Bayesian network meta-analysis. RESULTS: A total of 25 RCTs involving 22 vaccines were included in the study. None of vaccines had a higher incidence of SAEs than the placebo. Inactivated virus vaccines might be the safest, with a surface under the cumulative ranking curve (SUCRA) value of 0.16. BIV1-CovIran showed the highest safety index (SUCRA value: 0.13), followed by BBV152, Soberana, Gam-COVID-Vac, and ZF2001. There were no significant differences among the various types of vaccines regarding the efficacy in preventing symptomatic SARS-CoV-2 infection, although there was a trend toward higher efficacy of the mRNA vaccines (SUCRA value: 0.09). BNT162b2 showed the highest efficacy (SUCRA value: 0.02) among the individual vaccines, followed by mRNA-1273, Abdala, Gam-COVID-Vac, and NVX-CoV2373. BNT162b2 had the highest efficacy (SUCRA value: 0.08) in the elderly population, whereas CVnCoV, CoVLP + AS03, and CoronaVac were not significantly different from the placebo. CONCLUSIONS: None of the different types of vaccines were significantly superior in terms of efficacy, while mRNA vaccines were significantly inferior in safety to other types. BNT162b2 had the highest efficacy in preventing symptomatic SARS-CoV-2 infection in adults and the elderly, whereas BIV1-CovIran had the lowest incidence of SAEs in adults.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Ensaios Clínicos Fase III como Assunto , Metanálise em Rede , SARS-CoV-2 , Humanos , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , COVID-19/epidemiologia , SARS-CoV-2/imunologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Eficácia de Vacinas , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/efeitos adversos , Teorema de BayesRESUMO
Background: Radiotherapy is an effective treatment for indolent non-Hodgkin lymphoma (iNHL); however, the optimal radiotherapy dose remains to be determined. We hypothesize that a suitable dose may exist between 4 and 24 Gy. Methods: This prospective multicenter phase II trial intends to recruit 73 sites of iNHL patients, who will receive involved-site radiotherapy of 12 Gy in four fractions. The primary objective is the 6-month clinical complete response rate. Tumor tissue, blood and conjunctival specimens will be collected to identify potential predictive biomarkers. Discussion: The CLCG-iNHL-01 trial will evaluate the efficacy and toxicity of 12 Gy in patients with iNHL and provide information on a novel hypofractionation regimen of low-dose radiotherapy. Clinical Trial Registration: NCT05543070 (ClinicalTrials.gov).
Assuntos
Linfoma não Hodgkin , Humanos , Estudos Prospectivos , Linfoma não Hodgkin/tratamento farmacológico , Resultado do Tratamento , Ensaios Clínicos Fase II como Assunto , Estudos Multicêntricos como AssuntoRESUMO
BACKGROUND: Although two recent phase III randomized controlled trials showed survival benefits of undergoing secondary cytoreductive surgery for an initial relapse of ovarian cancer, patients who received a poly-ADP ribose polymerase inhibitor (PARPi) as the first-line maintenance treatment, which is currently the standard treatment for advanced ovarian cancer, were not included in those trials. Therefore, determining an optimal treatment strategy, including secondary cytoreductive surgery, in patients whose cancer progresses even with PARPi treatment, is needed. PRIMARY OBJECTIVE: To determine whether secondary cytoreductive surgery is beneficial in patients who have progressed on PARPi maintenance treatment. STUDY HYPOTHESIS: Secondary cytoreductive surgery followed by chemotherapy is superior to chemotherapy alone for patients who have progressed on PARPi maintenance treatment. TRIAL DESIGN: The SOCCER-P study is a multicenter randomized phase II clinical trial. Patients who meet the eligibility criteria will be randomized to either undergo secondary cytoreductive surgery and subsequent platinum-based chemotherapy plus or minus bevacizumab, or to receive platinum-based chemotherapy plus or minus bevacizumab alone. Patients randomly allocated to the surgery group will undergo secondary cytoreductive surgery followed by six cycles of a physician's choice of platinum-based chemotherapy once they have recovered from surgery. MAJOR INCLUSION/EXCLUSION CRITERIA: The major inclusion criteria are as follows: first recurrence of disease with treatment-free interval from last platinum dose (TFIp) ≥6 months and progression during PARPi maintenance or treatment-free interval from last PARPi therapy (TFIPARPi) <3 months. The major exclusion criteria are as follows: >1 line of prior chemotherapy, TFIp <6 months, and radiological signs suggesting metastases not accessible to surgical removal (complete resection is deemed not possible). PRIMARY ENDPOINT: Progression-free survival. SAMPLE SIZE: 124 patients. ESTIMATED DATES FOR COMPLETING ACCRUAL AND PRESENTING RESULTS: Accrual completion approximately the end of 2026 and the results are expected after 2 years of follow-up in 2029. TRIAL REGISTRATION: NCT05704621.
Assuntos
Procedimentos Cirúrgicos de Citorredução , Recidiva Local de Neoplasia , Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/cirurgia , Neoplasias Ovarianas/patologia , Procedimentos Cirúrgicos de Citorredução/métodos , Recidiva Local de Neoplasia/tratamento farmacológico , Quimioterapia de Manutenção/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Adulto , Pessoa de Meia-Idade , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
BACKGROUND AND OBJECTIVE: The resurgence of severe and progressive silicosis among engineered stone benchtop industry workers is a global health crisis. We investigated the link between the physico-chemical characteristics of engineered stone dust and lung cell responses to understand components that pose the greatest risk. METHODS: Respirable dust from 50 resin-based engineered stones, 3 natural stones and 2 non-resin-based materials was generated and analysed for mineralogy, morphology, metals, resin, particle size and charge. Human alveolar epithelial cells and macrophages were exposed in vitro to dust and assessed for cytotoxicity and inflammation. Principal component analysis and stepwise linear regression were used to explore the relationship between engineered stone components and the cellular response. RESULTS: Cutting engineered stone generated fine particles of <600 nm. Crystalline silica was the main component with metal elements such as Ti, Cu, Co and Fe also present. There was some evidence to suggest differences in cytotoxicity (p = 0.061) and IL-6 (p = 0.084) between dust samples. However, IL-8 (CXCL8) and TNF-α levels in macrophages were clearly variable (p < 0.05). Quartz explained 11% of the variance (p = 0.019) in macrophage inflammation while Co and Al accounted for 32% of the variance (p < 0.001) in macrophage toxicity, suggesting that crystalline silica only partly explains the cell response. Two of the reduced-silica, non-engineered stone products induced considerable inflammation in macrophages. CONCLUSION: These data suggest that silica is not the only component of concern in these products, highlighting the caution required as alternative materials are produced in an effort to reduce disease risk.
Assuntos
Exposição Ocupacional , Silicose , Humanos , Exposição Ocupacional/efeitos adversos , Silicose/etiologia , Pulmão/patologia , Dióxido de Silício/toxicidade , Poeira/análise , Inflamação/patologiaRESUMO
PURPOSE: To identify the extent of damage to the superficial vascular complex and deep vascular complex as the stage of diabetic retinopathy (DR) increases. METHODS: Subjects were divided into four groups: patients with type 2 diabetes without DR (Group 1), those with mild-to-moderate nonproliferative DR (Group 2), those with severe-to-very severe nonproliferative DR (Group 3), and those with proliferative DR (Group 4). The vessel densities of the superficial vascular complex (superficial vessel density, SVD) and deep vascular complex (deep vessel density, DVD) and their ratios were compared. Linear regression analyses were used to identify factors associated with the SVD/DVD ratio. RESULTS: The SVDs were 25.5% ± 6.1%, 25.1% ± 7.0%, 24.5% ± 9.0%, and 21.6% ± 6.9% (P = 0.048); the DVDs 25.6% ± 5.3%, 23.0% ± 7.0%, 22.3% ± 8.8%, and 17.5% ± 5.0% (P < 0.001); and the SVD/DVD ratios 1.00 ± 0.16, 1.12 ± 0.20, 1.14 ± 0.33, and 1.24 ± 0.27 (P < 0.001) in Groups 1 to 4, respectively. In multivariate analysis, DR severity (B = 7.16, P < 0.001) and the HbA1c level (B = 1.57, P = 0.042) were significantly associated with the SVD/DVD ratio. CONCLUSION: Both the SVD and DVD tended to decrease in the advanced stages of DR, and the SVD/DVD ratio increased, indicating more severe damage to the deep vascular complex than the superficial vascular complex. The ratio was positively associated with the HbA1c level, indicating a significant relationship between that level and DVD rather than SVD damage.
Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Angiofluoresceinografia , Vasos Retinianos , Tomografia de Coerência Óptica , Humanos , Retinopatia Diabética/diagnóstico , Masculino , Feminino , Vasos Retinianos/patologia , Vasos Retinianos/diagnóstico por imagem , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/complicações , Tomografia de Coerência Óptica/métodos , Angiofluoresceinografia/métodos , Idoso , Estudos Retrospectivos , Índice de Gravidade de Doença , Acuidade VisualRESUMO
BACKGROUND: The purpose of this study was to evaluate the safety and efficacy of preoperative concurrent chemoradiotherapy (preCRT) for locally advanced rectal cancer in older people who were classified as "fit" by comprehensive geriatric assessment (CGA). METHODS: A single-arm, multicenter, phase II trial was designed. Patients were eligible for this study if they were aged 70 years or above and met the standards of "fit" (SIOG1) as evaluated by CGA and of the locally advanced risk category. The primary endpoint was 2-year disease-free survival (DFS). Patients were scheduled to receive preCRT (50 Gy) with raltitrexed (3 mg/m2 on days 1 and 22). RESULTS: One hundred and nine patients were evaluated by CGA, of whom eighty-six, eleven and twelve were classified into the fit, intermediate and frail category. Sixty-eight fit patients with a median age of 74 years were enrolled. Sixty-four patients (94.1%) finished radiotherapy without dose reduction. Fifty-four (79.3%) patients finished the prescribed raltitrexed therapy as planned. Serious toxicity (grade 3 or above) was observed in twenty-four patients (35.3%), and fourteen patients (20.6%) experienced non-hematological side effects. Within a median follow-up time of 36.0 months (range: 5.9-63.1 months), the 2-year overall survival (OS), cancer-specific survival (CSS) and disease-free survival (DFS) rates were 89.6% (95% CI: 82.3-96.9), 92.4% (95% CI: 85.9-98.9) and 75.6% (95% CI: 65.2-86.0), respectively. Forty-eight patients (70.6%) underwent surgery (R0 resection 95.8%, R1 resection 4.2%), the corresponding R0 resection rate among the patients with positive mesorectal fascia status was 76.6% (36/47). CONCLUSION: This phase II trial suggests that preCRT is efficient with tolerable toxicities in older rectal cancer patients who were evaluated as fit based on CGA. TRIAL REGISTRATION: The registration number on ClinicalTrials.gov was NCT02992886 (14/12/2016).