Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 98(3): e0185923, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38411948

RESUMO

Superinfection exclusion (SIE) is a phenomenon in which a preexisting infection prevents a secondary infection. SIE has been described for several flaviviruses, such as West Nile virus vs Nhumirim virus and Dengue virus vs yellow fever virus. Zika virus (ZIKV) is an emerging flavivirus posing threats to human health. The SIE between ZIKV and Japanese encephalitis virus (JEV) is investigated in this study. Our results demonstrate for the first time that JEV inhibits ZIKV infection in both mammalian and mosquito cells, whether co-infects or subsequently infects after ZIKV. The exclusion effect happens at the stage of ZIKV RNA replication. Further studies show that the expression of JEV NS2B protein is sufficient to inhibit the replication of ZIKV, and the outer membrane region of NS2B (46-103 aa) is responsible for this SIE. JEV infection and NS2B expression also inhibit the infection of the vesicular stomatitis virus. In summary, our study characterized a SIE caused by JEV NS2B. This may have potential applications in the prevention and treatment of ZIKV or other RNA viruses.IMPORTANCEThe reemerged Zika virus (ZIKV) has caused severe symptoms in humans and poses a continuous threat to public health. New vaccines or antiviral agents need to be developed to cope with possible future pandemics. In this study, we found that infection of Japanese encephalitis virus (JEV) or expression of NS2B protein well inhibited the replication of ZIKV. It is worth noting that both the P3 strain and vaccine strain SA14-14-2 of JEV exhibited significant inhibitory effects on ZIKV. Additionally, the JEV NS2B protein also had an inhibitory effect on vesicular stomatitis virus infection, suggesting that it may be a broad-spectrum antiviral factor. These findings provide a new way of thinking about the prevention and treatment of ZIKV.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Superinfecção , Proteínas não Estruturais Virais , Infecção por Zika virus , Animais , Humanos , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/metabolismo , Encefalite Japonesa/virologia , Estomatite Vesicular , Zika virus , Proteínas não Estruturais Virais/metabolismo
2.
J Gen Virol ; 105(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38506716

RESUMO

PCV2 belongs to the genus Circovirus in the family Circoviridae, whose genome is replicated by rolling circle replication (RCR). PCV2 Rep is a multifunctional enzyme that performs essential functions at multiple stages of viral replication. Rep is responsible for nicking and ligating single-stranded DNA and unwinding double-stranded DNA (dsDNA). However, the structure and function of the Rep are still poorly understood, which significantly impedes viral replication research. This study successfully resolved the structure of the PCV2 Rep ATPase domain (PRAD) using X-ray crystallography. Homologous structure search revealed that Rep belonged to the superfamily 3 (SF3) helicase, and multiple conserved residues were identified during sequence alignment with SF3 family members. Simultaneously, a hexameric PRAD model was generated for analysing characteristic structures and sites. Mutation of the conserved site and measurement of its activity showed that the hallmark motifs of the SF3 family influenced helicase activity by affecting ATPase activity and ß-hairpin just caused the loss of helicase activity. The structural and functional analyses of the PRAD provide valuable insights for future research on PCV2 replication and antiviral strategies.


Assuntos
Circovirus , Suínos , Animais , Circovirus/genética , Adenosina Trifosfatases/genética , Cristalografia por Raios X , DNA Helicases/genética , Replicação do DNA
3.
J Gen Virol ; 105(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656455

RESUMO

Porcine epidemic diarrhea (PED) is a serious disease in piglets that leads to high mortality. An effective measure that provides higher IgA levels in the intestine and milk is required to decrease losses. Porcine epidemic diarrhea virus (PEDV) was dissolved in calcium alginate (Alg) and combined with chitosan (CS) via electrostatic interactions between cationic chitosan and anionic alginate to create a porous gel (Alg-CS+PEDV). The gel was used to immunize mice orally or in combination with subcutaneous injections of inactivated PEDV vaccine. At 12 and 24 days after immunization, levels of IgA and IgG in Alg-CS+PEDV were higher than with normal PEDV oral administration. At 24 days after immunization, the concentration of IFN-γ in Alg-CS+PEDV was higher than with normal PEDV oral administration. Furthermore, oral administration combining subcutaneous immunization induced higher levels of IgG and IgA than oral administration alone. Our study provides a new method for the preparation and administration of oral vaccines to achieve enhanced mucosal immunity against PEDV.


Assuntos
Alginatos , Anticorpos Antivirais , Quitosana , Imunidade nas Mucosas , Imunoglobulina A , Imunoglobulina G , Vírus da Diarreia Epidêmica Suína , Vacinas Virais , Animais , Administração Oral , Vírus da Diarreia Epidêmica Suína/imunologia , Alginatos/administração & dosagem , Quitosana/administração & dosagem , Camundongos , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Anticorpos Antivirais/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Suínos , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Feminino , Géis/administração & dosagem , Camundongos Endogâmicos BALB C , Interferon gama/imunologia , Ácido Glucurônico/administração & dosagem , Ácidos Hexurônicos/administração & dosagem
4.
Vet Microbiol ; 290: 109977, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185072

RESUMO

Japanese encephalitis virus (JEV) is a zoonotic pathogen belonging to the Flavivirus genus, causing viral encephalitis in humans and reproductive failure in swine. The 3' untranslated region (3'UTR) of JEV contains highly conservative secondary structures required for viral translation, RNA synthesis, and pathogenicity. Identification of host factors interacting with JEV 3'UTR is crucial for elucidating the underlying mechanism of flavivirus replication and pathogenesis. In this study, U2 snRNP auxiliary factor 2 (U2AF2) was identified as a novel cellular protein that interacts with the JEV genomic 3'UTR (the SL-I, SL-II, SL-III, and DB region) via its 1 to 148 amino acids. JEV infection or JEV 3' UTR on its own triggered the nuclear-localized U2AF2 redistributed to the cytoplasm and colocalized with viral replication complex. U2AF2 also interacts with JEV NS3 and NS5 protein, the downregulation of U2AF2 nearly abolished the formation of flavivirus replication vesicles. The production of JEV protein, RNA, and viral titers were all increased by U2AF2 overexpression and decreased by knockdown. U2AF2 also functioned as a pro-viral factor for Zika virus (ZIKV) and West Nile virus (WNV), but not for vesicular stomatitis virus (VSV). Mechanically, U2AF2 facilitated the synthesis of both positive- and negative-strand flavivirus RNA without affecting viral attachment, internalization or release process. Collectively, our work paves the way for developing U2AF2 as a potential flavivirus therapeutic target.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Flavivirus , Doenças dos Suínos , Infecção por Zika virus , Zika virus , Humanos , Animais , Suínos , Flavivirus/genética , Regiões 3' não Traduzidas , Ribonucleoproteína Nuclear Pequena U2/genética , Infecção por Zika virus/genética , Infecção por Zika virus/veterinária , Replicação Viral/genética , Linhagem Celular , Zika virus/genética , Zika virus/metabolismo , Vírus da Encefalite Japonesa (Espécie)/genética , RNA Viral/genética , RNA Viral/metabolismo , Fator de Processamento U2AF/genética , Doenças dos Suínos/genética
5.
Front Biosci (Landmark Ed) ; 29(3): 100, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38538277

RESUMO

BACKGROUND: As a dedifferentiated tumor, small cell endometrial neuroendocrine tumors (NETs) are rare and frequently diagnosed at an advanced stage with a poor prognosis. Current treatment recommendations are often extrapolated from histologically similar tumors in other sites or based on retrospective studies. The exploration for diagnostic and therapeutic markers in small cell NETs is of great significance. METHODS: In this study, we conducted single-cell RNA sequencing on a specimen obtained from a patient diagnosed with small cell endometrial neuroendocrine carcinoma (SCNEC) based on pathology. We revealed the cell map and intratumoral heterogeneity of the cancer cells through data analysis. Further, we validated the function of ISL LIM Homeobox 1 (ISL1) in vitro in an established neuroendocrine cell line. Finally, we examined the association between ISL1 and tumor staging in small cell lung cancer (SCLC) patient samples. RESULTS: We observed the significant upregulation of ISL1 expression in tumor cells that showed high expression of the neuroepithelial markers. Additionally, in vitro cell function experiments demonstrated that the high ISL1 expression group exhibited markedly higher cell proliferation and migration abilities compared to the low expression group. Finally, we showed that the expression level of ISL1 was correlated with SCLC stages. CONCLUSIONS: ISL1 protein in NETs shows promise as a potential biomarker for diagnosis and treatment.


Assuntos
Carcinoma Neuroendócrino , Tumores Neuroendócrinos , Feminino , Humanos , Fatores de Transcrição/genética , Estudos Retrospectivos , Análise da Expressão Gênica de Célula Única , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/análise , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Endométrio/química , Endométrio/metabolismo , Endométrio/patologia , Carcinoma Neuroendócrino/diagnóstico , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/terapia
6.
Sci Rep ; 14(1): 13939, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886444

RESUMO

Feed efficiency (FE) is essential for pig production, has been reported to be partially explained by gut microbiota. Despite an extensive body of research literature to this topic, studies regarding the regulation of feed efficiency by gut microbiota remain fragmented and mostly confined to disorganized or semi-structured unrestricted texts. Meanwhile, structured databases for microbiota analysis are available, yet they often lack a comprehensive understanding of the associated biological processes. Therefore, we have devised an approach to construct a comprehensive knowledge graph by combining unstructured textual intelligence with structured database information and applied it to investigate the relationship between pig gut microbes and FE. Firstly, we created the pgmReading knowledge base and the domain ontology of pig gut microbiota by annotating, extracting, and integrating semantic information from 157 scientific publications. Secondly, we created the pgmPubtator by utilizing PubTator to expand the semantic information related to microbiota. Thirdly, we created the pgmDatabase by mapping and combining the ADDAGMA, gutMGene, and KEGG databases based on the ontology. These three knowledge bases were integrated to form the Pig Gut Microbial Knowledge Graph (PGMKG). Additionally, we created five biological query cases to validate the performance of PGMKG. These cases not only allow us to identify microbes with the most significant impact on FE but also provide insights into the metabolites produced by these microbes and the associated metabolic pathways. This study introduces PGMKG, mapping key microbes in pig feed efficiency and guiding microbiota-targeted optimization.


Assuntos
Ração Animal , Microbioma Gastrointestinal , Animais , Suínos , Bases de Conhecimento , Bases de Dados Factuais
7.
Heliyon ; 10(15): e35449, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170175

RESUMO

Foot-and-mouth disease virus (FMDV) 2C protein is a conserved non-structural protein and crucial for replication of the virus. In this study, FMDV 2C protein was prepared and the enzymatic activities were investigated in detail. The protein could digest ssDNA or ssRNA into a small fragment at about 10 nt, indicating that the protein has nuclease activity. But it did not show digestion to blunt-end dsDNA or dsRNA. The nuclease activity of 2C protein could be inhibited in 2 mM Zn2+ or Ca2+ while enhanced by Mg2+ or Mn2+. FMDV 2C protein exhibited unwinding activity to all the three kinds of dsDNA and dsRNA (5' protruded, 3' protruded, and blunt-end). The unwinding velocity to 5' protruded dsRNA was higher than to the blunt-end dsRNA. 2C protein only showed unwinding activity in high concentration of Mg2+, but no unwinding activity in physiological concentrations of Mg2+ and Ca2+, as well as in cell lysate. The 2C protein could catalyze two structured ssRNA to form double strand, thus it was proved to have RNA chaperone activity. The Mg2+ and ATP in different concentrations did not show promotion to the RNA chaperone activity. Finally, six mutant proteins (K116A, D160A, D170A, N207A, R226A, and F316A) were constructed and the enzymatic activities were analyzed. All the six mutations reduced the ATPase activity, D170A and F361A could inactivate the nuclease activity, while the N207A and F316A could inactivate the helicase activity. Our study provides a comprehensive understanding of the enzymatic activities of FMDV 2C protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA