Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Acta Pharmacol Sin ; 45(10): 2163-2173, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38834683

RESUMO

Bruton's tyrosine kinase (BTK) has emerged as a therapeutic target for B-cell malignancies, which is substantiated by the efficacy of various irreversible or reversible BTK inhibitors. However, on-target BTK mutations facilitating evasion from BTK inhibition lead to resistance that limits the therapeutic efficacy of BTK inhibitors. In this study we employed structure-based drug design strategies based on established BTK inhibitors and yielded a series of BTK targeting compounds. Among them, compound S-016 bearing a unique tricyclic structure exhibited potent BTK kinase inhibitory activity with an IC50 value of 0.5 nM, comparable to a commercially available BTK inhibitor ibrutinib (IC50 = 0.4 nM). S-016, as a novel irreversible BTK inhibitor, displayed superior kinase selectivity compared to ibrutinib and significant therapeutic effects against B-cell lymphoma both in vitro and in vivo. Furthermore, we generated BTK inhibitor-resistant lymphoma cells harboring BTK C481F or A428D to explore strategies for overcoming resistance. Co-culture of these DLBCL cells with M0 macrophages led to the polarization of M0 macrophages toward the M2 phenotype, a process known to support tumor progression. Intriguingly, we demonstrated that SYHA1813, a compound targeting both VEGFR and CSF1R, effectively reshaped the tumor microenvironment (TME) and significantly overcame the acquired resistance to BTK inhibitors in both BTK-mutated and wild-type BTK DLBCL models by inhibiting angiogenesis and modulating macrophage polarization. Overall, this study not only promotes the development of new BTK inhibitors but also offers innovative treatment strategies for B-cell lymphomas, including those with BTK mutations.

2.
Bioorg Chem ; 116: 105346, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34536929

RESUMO

Starting from the antimalarial drugs chloroquine and hydroxychloroquine, we conducted a structural optimization on the side chain of chloroquine by introducing amino substituted longer chains thus leading to a series of novel aminochloroquine derivatives. Anti-infectious effects against SARS-Cov2 spike glycoprotein as well as immunosuppressive and anti-inflammatory activities of the new compounds were evaluated. Distinguished immunosuppressive activities on the responses of T cell, B cell and macrophages upon mitogen and pathogenic signaling were manifested. Compounds 9-11 displayed the most promising inhibitory effects both on cellular proliferation and on the production of multiple pro-inflammatory cytokines, including IL-17, IFN-γ, IL-6, IL-1ß and TNF-α, which might be insightful in the pursuit of treatment for immune disorders and inflammatory diseases.


Assuntos
Aminas/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Antivirais/farmacologia , Cloroquina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Aminas/química , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Antivirais/síntese química , Antivirais/química , Linfócitos B/imunologia , Proliferação de Células/efeitos dos fármacos , Cloroquina/síntese química , Cloroquina/química , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Relação Estrutura-Atividade , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
3.
Acta Pharmacol Sin ; 42(10): 1653-1664, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33441995

RESUMO

Rheumatoid arthritis (RA) is characterized by joint leukocyte infiltration, synovial inflammation and bone damage result from osteoclastogenesis. Bruton's tyrosine kinase (BTK) is a key regulator of B cell receptor (BCR) and Fc gamma receptor (FcγR) signaling involved in the pathobiology of RA and other autoimmune disorders. SOMCL-17-016 is a potent and selective tricyclic BTK inhibitor, structurally distinct from other known BTK inhibitors. In present study we investigated the therapeutic efficacy of SOMCL-17-016 in a mouse collagen-induced arthritis (CIA) model and underlying mechanisms. CIA mice were administered SOMCL-17-016 (6.25, 12.5, 25 mg·kg-1·d-1, ig), or ibrutinib (25 mg·kg-1·d-1, ig) or acalabrutinib (25 mg·kg-1·d-1, ig) for 15 days. We showed that oral administration of SOMCL-17-016 dose-dependently ameliorated arthritis severity and bone damage in CIA mice; it displayed a higher in vivo efficacy than ibrutinib and acalabrutinib at the corresponding dosage. We found that SOMCL-17-016 administration dose-dependently inhibited anti-IgM-induced proliferation and activation of B cells from CIA mice, and significantly decreased anti-IgM/anti-CD40-stimulated RANKL expression in memory B cells from RA patients. In RANKL/M-CSF-stimulated RAW264.7 cells, SOMCL-17-016 prevented osteoclast differentiation and abolished RANK-BTK-PLCγ2-NFATc1 signaling. In summary, this study demonstrates that SOMCL-17-016 presents distinguished therapeutic effects in the CIA model. SOMCL-17-016 exerts a dual inhibition of B cell function and osteoclastogenesis, suggesting that it to be a promising drug candidate for RA treatment.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Células B de Memória/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Tirosina Quinase da Agamaglobulinemia/metabolismo , Animais , Autoanticorpos/metabolismo , Inflamação/tratamento farmacológico , Ativação Linfocitária/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos DBA , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Pirimidinas/uso terapêutico , Alcaloides de Pirrolizidina/uso terapêutico , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Bioorg Med Chem Lett ; 29(6): 836-838, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30685094

RESUMO

Starting from the recently launched FLT3/AXL multi-targeted inhibitor Gilteritinib (5), we conducted a side-chain ring closure medicinal chemistry approach leading to the identification of compound 15c as a highly potent AXL inhibitor in the biochemical and cellular anti-proliferative assays, with IC50 values of 1.2 and 0.3 nM, respectively. Compared with the reference compound 5, our new discovered AXL inhibitor 15c is more potent in both assays.


Assuntos
Benzazepinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Benzazepinas/síntese química , Benzazepinas/farmacocinética , Linhagem Celular Tumoral , Descoberta de Drogas , Camundongos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Pirazinas/síntese química , Pirazinas/química , Pirazinas/farmacocinética , Ratos Sprague-Dawley
5.
Bioorg Med Chem Lett ; 27(11): 2544-2548, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28404375

RESUMO

Three series of pyrazolo[3,4-d]pyrimidine derivatives were synthesized and evaluated as RET kinase inhibitors. Compounds 23a and 23c were identified to show significant activity both in the biochemical and the BaF3/CCDC6-RET cell assays. Compound 23c was found to significantly inhibit RET phosphorylation and down-stream signaling in BaF3/CCDC6-RET cells, confirming its potent cellular RET-targeting profile. Different from other RET inhibitors with equal potency against KDR that associated with severe toxicity, 23c did not show significant KDR-inhibition even at the concentration of 1µM. These results demonstrated that 23c is a potent and selective RET inhibitor.


Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Pirazóis/química , Pirimidinas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/toxicidade , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Humanos , Simulação de Acoplamento Molecular , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/toxicidade , Proteínas Proto-Oncogênicas c-ret/metabolismo , Pirazóis/síntese química , Pirazóis/toxicidade , Pirimidinas/síntese química , Pirimidinas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 26(22): 5399-5402, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27769623

RESUMO

A metabolism-based fine-tuning structure-optimization was conducted to address the oxidative metabolism and hERG blockade of our early ALK inhibitor. Compound 8 was identified showing high potency against both ALK wild type and gatekeeper mutant. In addition to the optimal PK properties and significant cell antiproliferative effects, 8 showed complete tumor growth inhibition at doses of 50 or 10mg/kg once daily in the Karpas299 xenograft model. All these results encouraged the further development of 8 as a potent and orally bioavailable ALK inhibitor.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Administração Oral , Quinase do Linfoma Anaplásico , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Derivados de Benzeno/farmacocinética , Derivados de Benzeno/uso terapêutico , Linhagem Celular Tumoral , Descoberta de Drogas , Humanos , Camundongos , Células NIH 3T3 , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/metabolismo , Oxirredução , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Ratos Sprague-Dawley , Receptores Proteína Tirosina Quinases/metabolismo , Regulador Transcricional ERG/metabolismo
7.
Med Res Rev ; 35(4): 720-52, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25763934

RESUMO

Chronic lymphocytic leukemia (CLL) remains the most incurable leukemia. Early chemotherapeutic treatments, including alkylating agents, purine nucleoside derivatives, and immunotherapeutic antibodies, only show limited benefits for patients but severe off-target related side effects. Recent advances in understanding of the critical molecular pathways of regulating proliferation and survival of B-CLL cells have spurred a new therapeutical strategy by selectively targeting phosphoinositide 3-kinase delta (PI3Kδ). Idelalisib, a first-in-class PI3Kδ-selective small molecule has received the FDA's fast-track approval in July of 2014 as a new treatment of CLL, indolent B-cell non-Hodgkin's lymphoma, and relapsed small lymphocytic lymphoma. Undoubtedly, the success of idelalisib has provided a solid support in the development of PI3Kδ-specific inhibitors and reformed the concept of treating CLL. However, the number of reported selective inhibitors of PI3Kδ is very limited and very few have advanced into clinical trials. The mechanism of their actions remains elusive. More profound understanding on the modes of action of new PI3Kδ inhibitors will further validate the PI3Kδ-targeting strategy, and help to identify biomarkers capable of stratifying patients who will most likely benefit from the therapy.


Assuntos
Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Terapia de Alvo Molecular , Inibidores de Fosfoinositídeo-3 Quinase , Animais , Ensaios Clínicos como Assunto , Humanos , Leucemia Linfocítica Crônica de Células B/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Antígenos de Linfócitos B/metabolismo
9.
Bioorg Med Chem ; 23(3): 564-78, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25537530

RESUMO

A series of 3-amino-benzo[d]isoxazole-/3-aminoindazole-based compounds were designed, synthesized and pharmacologically evaluated as tyrosine kinase c-Met inhibitors. The SAR study was conducted leading to identification of nine compounds (8d, 8e, 12, 28a-d, 28h and 28i) with IC50s less than 10nM against c-Met. Compound 28a stood out as the most potent c-Met inhibitor displaying potent inhibitory effects both at enzymatic (IC50=1.8 nM) and cellular (IC50=0.18 µM on EBC-1 cells) levels. In addition, 28a had a relatively good selectivity compared to a panel of our in-house 14 RTKs.


Assuntos
Isoxazóis/química , Isoxazóis/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Descoberta de Drogas , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
10.
J Med Chem ; 67(8): 6268-6291, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38619191

RESUMO

Overactivation of cyclic GMP-AMP synthase (cGAS) is implicated in the occurrence of many inflammatory and autoimmune diseases, and inhibition of cGAS with a specific inhibitor has been proposed as a potential therapeutic strategy. However, only a few low-potency cGAS inhibitors have been reported, and few are suitable for clinical investigation. As a continuation of our structural optimization on the reported cGAS inhibitor 6 (G140), we developed a series of spiro[carbazole-3,3'-pyrrolidine] derivatives bearing a unique 2-azaspiro[4.5]decane structural motif, among which compound 30d-S was identified with high cellular effects against cGAS. This compound showed improved plasma exposure, lower clearance, and an oral bioavailability of 35% in rats. Moreover, in the LPS-induced acute lung injury (ALI) mice model, oral administration of compound 30d-S at 30 mg/kg markedly reduced lung inflammation and alleviated histopathological changes. These results confirm that 30d-S is a new efficacious cGAS inhibitor and is worthy of further investigation.


Assuntos
Lesão Pulmonar Aguda , Carbazóis , Desenho de Fármacos , Nucleotidiltransferases , Pirrolidinas , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Camundongos , Masculino , Humanos , Ratos , Carbazóis/síntese química , Carbazóis/farmacologia , Carbazóis/química , Carbazóis/uso terapêutico , Carbazóis/farmacocinética , Pirrolidinas/farmacologia , Pirrolidinas/síntese química , Pirrolidinas/química , Pirrolidinas/uso terapêutico , Pirrolidinas/farmacocinética , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/metabolismo , Lipopolissacarídeos , Ratos Sprague-Dawley , Compostos de Espiro/síntese química , Compostos de Espiro/farmacologia , Compostos de Espiro/química , Compostos de Espiro/uso terapêutico , Compostos de Espiro/farmacocinética , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
11.
J Med Chem ; 67(5): 3520-3541, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38417036

RESUMO

Accumulating evidence has demonstrated a critical pathological role of oxysterol receptor GPR183 in various inflammatory and autoimmune diseases, including inflammatory bowel disease (IBD). However, the currently reported GPR183 antagonists are very limited and not qualified for in vivo studies due to their inferior druglike properties. Herein, we conducted a structural elaboration focusing on improving its PK and safety profile based on a reference antagonist NIBR189. Of note, compound 33, bearing an aminobenzothiazole motif, exhibited reduced hERG inhibition, improved PK properties, and robust antagonistic activity (IC50 = 0.82 nM) with high selectivity against GPR183. Moreover, compound 33 displayed strong in vitro antimigration and anti-inflammatory activity in monocytes. Oral administration of compound 33 effectively improved the pathological symptoms of DSS-induced experimental colitis. All of these findings demonstrate that compound 33 is a novel and promising GPR183 antagonist suitable for further investigation to treat IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Oxisteróis , Receptores de Esteroides , Humanos , Oxisteróis/efeitos adversos , Tiazóis/efeitos adversos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Sulfato de Dextrana , Receptores Acoplados a Proteínas G
12.
J Med Chem ; 66(23): 16201-16221, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37990878

RESUMO

Hematopoietic progenitor kinase 1 (HPK1) is an important negative regulator in T-cell receptor signaling and as a promising key target for immunotherapy. Herein, based on the reported HPK1 inhibitor 2 featuring an isofuranone component, a structural optimization approach was conducted leading to several series of derivatives characterized by containing an isoindoline structural motif. Compound 49 was identified as a new potent HPK1 inhibitor with an IC50 value of 0.9 nM, more potent than compound 2 (5.5 nM). It also has an improved IV profile in rats and enhanced aqueous solubility. It effectively inhibited pSLP76 and reinvigorated T-cell receptor (TCR) signaling, promoting T-cell function and cytokine production both in naïve and antigen-specific T cells. Furthermore, compound 49 reversed the inhibition on T-cell activity mediated by classic immunosuppressive factors in the tumor microenvironment (TME). In the murine CT-26 tumor model, this compound reinvigorated the T cell and synergistically enhanced the antitumor efficacy of anti-PD1 at a well-tolerant dosage.


Assuntos
Transdução de Sinais , Linfócitos T , Camundongos , Ratos , Animais , Linfócitos T/metabolismo , Fosforilação , Ligação Proteica , Receptores de Antígenos de Linfócitos T
13.
J Med Chem ; 66(2): 1634-1651, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36642961

RESUMO

The histone lysine methyltransferase NSD2 is overexpressed, translocated, or mutated in multiple types of cancers and has emerged as an attractive therapeutic target. However, the development of small-molecule NSD2 inhibitors is still in its infancy, and selective and efficacious NSD2 inhibitors are highly desirable. Here, in view of the structural novelty of the reported NSD2 inhibitor DA3003-1, we conducted a comprehensive structural optimization based on the quinoline-5,8-dione scaffold. Compound 15a was identified possessing both high NSD2 inhibitory activity and potent anti-proliferative effects in the cell. Meanwhile, compound 15a has an excellent pharmacokinetic profile with high oral bioavailability. Further, this compound was found to display significant antitumor efficacy with desirable safety profile in the multiple myeloma xenograft mice models, thus warranting it as a promising candidate for further investigation.


Assuntos
Quinolinas , Proteínas Repressoras , Humanos , Animais , Camundongos , Quinolinas/farmacologia , Quinolinas/uso terapêutico
14.
EMBO Mol Med ; 15(3): e16235, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36652375

RESUMO

Poly-ADP-ribose polymerase (PARP) inhibitors (PARPi) have shown great promise for treating BRCA-deficient tumors. However, over 40% of BRCA-deficient patients fail to respond to PARPi. Here, we report that thioparib, a next-generation PARPi with high affinity against multiple PARPs, including PARP1, PARP2, and PARP7, displays high antitumor activities against PARPi-sensitive and -resistant cells with homologous recombination (HR) deficiency both in vitro and in vivo. Thioparib treatment elicited PARP1-dependent DNA damage and replication stress, causing S-phase arrest and apoptosis. Conversely, thioparib strongly inhibited HR-mediated DNA repair while increasing RAD51 foci formation. Notably, the on-target inhibition of PARP7 by thioparib-activated STING/TBK1-dependent phosphorylation of STAT1, triggered a strong induction of type I interferons (IFNs), and resulted in tumor growth retardation in an immunocompetent mouse model. However, the inhibitory effect of thioparib on tumor growth was more pronounced in PARP1 knockout mice, suggesting that a specific PARP7 inhibitor, rather than a pan inhibitor such as thioparib, would be more relevant for clinical applications. Finally, genome-scale CRISPR screening identified PARP1 and MCRS1 as genes capable of modulating thioparib sensitivity. Taken together, thioparib, a next-generation PARPi acting on both DNA damage response and antitumor immunity, serves as a therapeutic potential for treating hyperactive HR tumors, including those resistant to earlier-generation PARPi.


Assuntos
Interferon Tipo I , Neoplasias , Animais , Camundongos , Linhagem Celular Tumoral , Reparo do DNA , Recombinação Homóloga , Interferon Tipo I/genética , Interferon Tipo I/uso terapêutico , Neoplasias/genética , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Reparo de DNA por Recombinação , Proteínas de Ligação a RNA/genética , Resistencia a Medicamentos Antineoplásicos
15.
Commun Chem ; 5(1): 78, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36697792

RESUMO

As a unique organofluorine fragment, gem-difluoromethylated motifs have received widespread attention. Here, a convenient and efficient synthesis of aryldifluoromethyl aryl ethers (ArCF2OAr') was established via Nickel-catalyzed aryloxydifluoromethylation with arylboronic acids. This approach features easily accessible starting materials, good tolerance of functionalities, and mild reaction conditions. Diverse late-stage difluoromethylation of many pharmaceuticals and natural products were readily realized. Notably, a new difluoromethylated PD-1/PD-L1 immune checkpoint inhibitor was conveniently synthesized and showed both improved metabolic stability and enhanced antitumor efficacy. Preliminary mechanistic studies suggested the involvement of a Ni(I/III) catalytic cycle.

16.
Eur J Med Chem ; 241: 114627, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35963129

RESUMO

Pharmacological activation of stimulator of interferon genes (STING) by agonists has emerged as a new modality of cancer immunotherapy. However, current available STING agonists remain in early developmental stage or failed in clinic trials due to limited efficacy in humans. In this report, we performed a structure-activity relationship study based on the benzothiophene oxobutanoic acid scaffold of MSA-2, a well-documented STING agonist by Merck, leading to a series of N-substituted acyloxyamino derivatives with potent STING activating effect. Among them, compounds 57 and 60 displayed the most potent activity specifically targeting both h- and m-STING. Particularly, 57 displayed more potent and rapid activation of the STING signaling pathway than ADU-S100 in THP1-Dual cells. In vivo anti-tumor efficacy of 57 by intratumoral or oral administration was also demonstrated in several mouse tumor models. Intriguingly, treatment with 57 eradicated all the CT26 tumor without further recurrence in all treated mice, which could also reject the same tumor re-inoculation, indicating an induction of immune memory by 57. Taken together, acyloxyamino derivative 57 represents a new chemotype of STING agonist with well-demonstrated in vivo anti-tumor activity, which is deserved for further investigation.


Assuntos
Imunoterapia , Proteínas de Membrana , Neoplasias , Animais , Humanos , Interferons , Proteínas de Membrana/agonistas , Camundongos , Neoplasias/patologia , Neoplasias/terapia , Relação Estrutura-Atividade , Células THP-1 , Tiofenos
17.
Eur J Med Chem ; 213: 113082, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33309163

RESUMO

KRAS is the most commonly altered oncogene of the RAS family, especially the G12C mutant (KRASG12C), which has been a promising drug target for many cancers. On the basis of the bicyclic pyridopyrimidinone framework of the first-in-class clinical KRASG12C inhibitor AMG510, a scaffold hopping strategy was conducted including a F-OH cyclization approach and a pyridinyl N-atom working approach leading to new tetracyclic and bicyclic analogues. Compound 26a was identified possessing binding potency of 1.87 µM against KRASG12C and cell growth inhibition of 0.79 µM in MIA PaCa-2 pancreatic cancer cells. Treatment of 26a with NCI-H358 cells resulted in down-regulation of KRAS-GTP levels and reduction of phosphorylation of downstream ERK and AKT dose-dependently. Molecular docking suggested that the fluorophenol moiety of 26a occupies a hydrophobic pocket region thus forming hydrogen bonding to Arg68. These results will be useful to guide further structural modification.


Assuntos
Antineoplásicos/síntese química , Inibidores Enzimáticos/síntese química , Neoplasias Pancreáticas/tratamento farmacológico , Piperazinas/síntese química , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Piridinas/síntese química , Pirimidinas/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclização , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Simulação de Acoplamento Molecular , Oncogenes/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Piridinas/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais , Relação Estrutura-Atividade , Neoplasias Pancreáticas
18.
J Med Chem ; 64(22): 16687-16702, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34761679

RESUMO

Blockade of immune checkpoint PD-1/PD-L1 has been a promising anticancer strategy; however, clinically available PD-1/PD-L1 small-molecule inhibitors are lacking. In view of the high potency of compound 2 (BMS-1002), structural fine tuning of the methoxy linkage together with diverse modification in the solvent interaction region was conducted. A series of novel derivatives featuring a difluoromethyleneoxy linkage were designed. Compound 43 was identified as the most promising PD-1/PD-L1 inhibitor with an IC50 value of 10.2 nM in the HTRF assay. This compound is capable of promoting CD8+ T cell activation through inhibiting PD-1/PD-L1 cellular signaling. Moreover, in the Hepa1-6 syngeneic mouse model, administration of compound 43 at 1 mg/kg dosage promoted CD8+ T cell activation and delayed the tumor growth with good tolerance. Notably, the tumor in one mouse of the compound 43-treated group was completely regressed. These results indicate that compound 43 is a promising candidate worthy of further investigation.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Desenho de Fármacos , Inibidores de Checkpoint Imunológico/química , Inibidores de Checkpoint Imunológico/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Humanos , Inibidores de Checkpoint Imunológico/síntese química , Inibidores de Checkpoint Imunológico/farmacocinética , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Med Chem ; 64(3): 1649-1669, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33470814

RESUMO

Activation of the stimulator of interferon gene (STING) has emerged as an exciting immuno-oncology therapeutic strategy; however, the first-generation STING agonists, cyclic dinucleotide (CDN) analogues, have suffered from many disadvantages and failed in clinical trials. Therefore, non-CDN small-molecule STING agonists are urgently needed. In view of the unique structure of the high potency of dimeric amidobenzimidazole STING agonist 5, a structural elaboration was conducted by modifying several structural hotspots of this scaffold. Triazole 40 was identified as a new potent STING activator, possessing EC50 values of 0.24 and 39.51 µM for h- and m-STING, respectively. This compound has a slightly better pharmacokinetic profile and is >20-fold more aqueously soluble than 5. It activated the STING signaling dramatically by directly binding and stabilizing all h-STING isoforms and m-STING. In vivo, intermittent administration of 40 was found to have significant antitumor efficacy with good tolerance in two mouse tumor models.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Benzimidazóis/síntese química , Benzimidazóis/farmacologia , Proteínas de Membrana/agonistas , Animais , Antineoplásicos/farmacocinética , Benzimidazóis/farmacocinética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Solubilidade , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Acta Pharm Sin B ; 10(12): 2272-2298, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33354501

RESUMO

Multiple cancer immunotherapies including chimeric antigen receptor T cell and immune checkpoint inhibitors (ICIs) have been successfully developed to treat various cancers by motivating the adaptive anti-tumor immunity. Particularly, the checkpoint blockade approach has achieved great clinic success as evidenced by several U.S. Food and Drug Administration (FDA)-approved anti-programmed death receptor 1/ligand 1 or anti-cytotoxic T lymphocyte associated protein 4 antibodies. However, the majority of cancers have low clinical response rates to these ICIs due to poor tumor immunogenicity. Indeed, the cyclic guanosine monophosphate-adenosine monophosphate synthase‒stimulator of interferon genes‒TANK-binding kinase 1 (cGAS‒STING‒TBK1) axis is now appreciated as the major signaling pathway in innate immune response across different species. Aberrant signaling of this pathway has been closely linked to multiple diseases, including auto-inflammation, virus infection and cancers. In this perspective, we provide an updated review on the latest progress on the development of small molecule modulators targeting the cGAS‒STING‒TBK1 signaling pathway and their preclinical and clinical use as a new immune stimulatory therapy. Meanwhile, highlights on the clinical candidates, limitations and challenges, as well as future directions in this field are also discussed. Further, small molecule inhibitors targeting this signaling axis and their potential therapeutic use for various indications are discussed as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA