Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Cell ; 187(1): 62-78.e20, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38096822

RESUMO

The microbiota influences intestinal health and physiology, yet the contributions of commensal protists to the gut environment have been largely overlooked. Here, we discover human- and rodent-associated parabasalid protists, revealing substantial diversity and prevalence in nonindustrialized human populations. Genomic and metabolomic analyses of murine parabasalids from the genus Tritrichomonas revealed species-level differences in excretion of the metabolite succinate, which results in distinct small intestinal immune responses. Metabolic differences between Tritrichomonas species also determine their ecological niche within the microbiota. By manipulating dietary fibers and developing in vitro protist culture, we show that different Tritrichomonas species prefer dietary polysaccharides or mucus glycans. These polysaccharide preferences drive trans-kingdom competition with specific commensal bacteria, which affects intestinal immunity in a diet-dependent manner. Our findings reveal unappreciated diversity in commensal parabasalids, elucidate differences in commensal protist metabolism, and suggest how dietary interventions could regulate their impact on gut health.


Assuntos
Microbioma Gastrointestinal , Parabasalídeos , Polissacarídeos , Animais , Humanos , Camundongos , Fibras na Dieta , Intestino Delgado/metabolismo , Polissacarídeos/metabolismo , Parabasalídeos/metabolismo , Carboidratos da Dieta/metabolismo , Biodiversidade
2.
Cell ; 186(14): 3111-3124.e13, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37348505

RESUMO

The gut microbiome modulates immune and metabolic health. Human microbiome data are biased toward industrialized populations, limiting our understanding of non-industrialized microbiomes. Here, we performed ultra-deep metagenomic sequencing on 351 fecal samples from the Hadza hunter-gatherers of Tanzania and comparative populations in Nepal and California. We recovered 91,662 genomes of bacteria, archaea, bacteriophages, and eukaryotes, 44% of which are absent from existing unified datasets. We identified 124 gut-resident species vanishing in industrialized populations and highlighted distinct aspects of the Hadza gut microbiome related to in situ replication rates, signatures of selection, and strain sharing. Industrialized gut microbes were found to be enriched in genes associated with oxidative stress, possibly a result of microbiome adaptation to inflammatory processes. This unparalleled view of the Hadza gut microbiome provides a valuable resource, expands our understanding of microbes capable of colonizing the human gut, and clarifies the extensive perturbation induced by the industrialized lifestyle.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Metagenoma , Eucariotos , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica
3.
Cell ; 185(19): 3617-3636.e19, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36070752

RESUMO

Efforts to model the human gut microbiome in mice have led to important insights into the mechanisms of host-microbe interactions. However, the model communities studied to date have been defined or complex, but not both, limiting their utility. Here, we construct and characterize in vitro a defined community of 104 bacterial species composed of the most common taxa from the human gut microbiota (hCom1). We then used an iterative experimental process to fill open niches: germ-free mice were colonized with hCom1 and then challenged with a human fecal sample. We identified new species that engrafted following fecal challenge and added them to hCom1, yielding hCom2. In gnotobiotic mice, hCom2 exhibited increased stability to fecal challenge and robust colonization resistance against pathogenic Escherichia coli. Mice colonized by either hCom2 or a human fecal community are phenotypically similar, suggesting that this consortium will enable a mechanistic interrogation of species and genes on microbiome-associated phenotypes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias/genética , Escherichia coli , Fezes , Microbioma Gastrointestinal/genética , Vida Livre de Germes , Humanos , Camundongos
4.
Cell ; 184(16): 4137-4153.e14, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34256014

RESUMO

Diet modulates the gut microbiome, which in turn can impact the immune system. Here, we determined how two microbiota-targeted dietary interventions, plant-based fiber and fermented foods, influence the human microbiome and immune system in healthy adults. Using a 17-week randomized, prospective study (n = 18/arm) combined with -omics measurements of microbiome and host, including extensive immune profiling, we found diet-specific effects. The high-fiber diet increased microbiome-encoded glycan-degrading carbohydrate active enzymes (CAZymes) despite stable microbial community diversity. Although cytokine response score (primary outcome) was unchanged, three distinct immunological trajectories in high-fiber consumers corresponded to baseline microbiota diversity. Alternatively, the high-fermented-food diet steadily increased microbiota diversity and decreased inflammatory markers. The data highlight how coupling dietary interventions to deep and longitudinal immune and microbiome profiling can provide individualized and population-wide insight. Fermented foods may be valuable in countering the decreased microbiome diversity and increased inflammation pervasive in industrialized society.


Assuntos
Dieta , Microbioma Gastrointestinal , Imunidade , Biodiversidade , Fibras na Dieta/farmacologia , Comportamento Alimentar , Feminino , Alimentos Fermentados , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/efeitos dos fármacos
5.
Cell ; 183(3): 589-591, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33125887

RESUMO

Ha and colleagues describe a previously unappreciated diversity of microbes in the mesenteric adipose tissue (MAT) surrounding the GI tract. Viable bacteria that are mislocalized from the gut microbiota and metabolically adapted to the MAT contribute to the "creeping fat" of Crohn's disease.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Adaptação Fisiológica , Tecido Adiposo , Humanos , Mesentério
6.
Cell ; 180(4): 717-728.e19, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32084341

RESUMO

Consumption of glucosinolates, pro-drug-like metabolites abundant in Brassica vegetables, has been associated with decreased risk of certain cancers. Gut microbiota have the ability to metabolize glucosinolates, generating chemopreventive isothiocyanates. Here, we identify a genetic and biochemical basis for activation of glucosinolates to isothiocyanates by Bacteroides thetaiotaomicron, a prominent gut commensal species. Using a genome-wide transposon insertion screen, we identified an operon required for glucosinolate metabolism in B. thetaiotaomicron. Expression of BT2159-BT2156 in a non-metabolizing relative, Bacteroides fragilis, resulted in gain of glucosinolate metabolism. We show that isothiocyanate formation requires the action of BT2158 and either BT2156 or BT2157 in vitro. Monocolonization of mice with mutant BtΔ2157 showed reduced isothiocyanate production in the gastrointestinal tract. These data provide insight into the mechanisms by which a common gut bacterium processes an important dietary nutrient.


Assuntos
Bacteroides thetaiotaomicron/metabolismo , Carboidratos da Dieta/metabolismo , Glucosinolatos/metabolismo , Intestinos/microbiologia , Animais , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/patogenicidade , Regulação Bacteriana da Expressão Gênica , Humanos , Masculino , Camundongos , Óperon , Simbiose
7.
Cell ; 169(3): 538-546.e12, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28431251

RESUMO

Applying synthetic biology to engineer gut-resident microbes provides new avenues to investigate microbe-host interactions, perform diagnostics, and deliver therapeutics. Here, we describe a platform for engineering Bacteroides, the most abundant genus in the Western microbiota, which includes a process for high-throughput strain modification. We have identified a novel phage promoter and translational tuning strategy and achieved an unprecedented level of expression that enables imaging of fluorescent-protein-expressing Bacteroides stably colonizing the mouse gut. A detailed characterization of the phage promoter has provided a set of constitutive promoters that span over four logs of strength without detectable fitness burden within the gut over 14 days. These promoters function predictably over a 1,000,000-fold expression range in phylogenetically diverse Bacteroides species. With these promoters, unique fluorescent signatures were encoded to allow differentiation of six species within the gut. Fluorescent protein-based differentiation of isogenic strains revealed that priority of gut colonization determines colonic crypt occupancy.


Assuntos
Bacteroides/classificação , Bacteroides/genética , Microbioma Gastrointestinal , Engenharia Genética , Animais , Bacteroides/isolamento & purificação , Vida Livre de Germes , Proteínas de Fluorescência Verde/genética , Camundongos , Regiões Promotoras Genéticas
8.
Immunity ; 51(2): 225-239, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31433970

RESUMO

The gut microbiota is a complex and plastic network of diverse organisms intricately connected with human physiology. Recent advances in profiling approaches of both the microbiota and the immune system now enable a deeper exploration of immunity-microbiota connections. An important next step is to elucidate a human-relevant "map" of microbial-immune wiring while focusing on animal studies to probe a prioritized subset of interactions. Here, we provide an overview of this field's current status and discuss two approaches for establishing priorities for detailed investigation: (1) longitudinal intervention studies in humans probing the dynamics of both the microbiota and the immune system and (2) the study of traditional populations to assess lost features of human microbial identity whose absence may be contributing to the rise of immunological disorders. These human-centered approaches offer a judicious path forward to understand the impact of the microbiota in immune development and function.


Assuntos
Microbioma Gastrointestinal/imunologia , Interações Hospedeiro-Patógeno , Sistema Imunitário , Animais , Homeostase , Humanos , Imunidade , Assistência Centrada no Paciente
9.
Nature ; 593(7858): 261-265, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33911281

RESUMO

Several enteric pathogens can gain specific metabolic advantages over other members of the microbiota by inducing host pathology and inflammation. The pathogen Clostridium difficile is responsible for a toxin-mediated colitis that causes 450,000 infections and 15,000 deaths in the United States each year1; however, the molecular mechanisms by which C. difficile benefits from this pathology remain unclear. To understand how the metabolism of C. difficile adapts to the inflammatory conditions that its toxins induce, here we use RNA sequencing to define, in a mouse model, the metabolic states of wild-type C. difficile and of an isogenic mutant that lacks toxins. By combining bacterial and mouse genetics, we demonstrate that C. difficile uses sorbitol derived from both diet and host. Host-derived sorbitol is produced by the enzyme aldose reductase, which is expressed by diverse immune cells and is upregulated during inflammation-including during toxin-mediated disease induced by C. difficile. This work highlights a mechanism by which C. difficile can use a host-derived nutrient that is generated during toxin-induced disease by an enzyme that has not previously been associated with infection.


Assuntos
Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidade , Infecções por Clostridium/metabolismo , Infecções por Clostridium/microbiologia , Interações Hospedeiro-Patógeno , Sorbitol/metabolismo , Aldeído Redutase/metabolismo , Animais , Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/genética , Clostridioides difficile/genética , Infecções por Clostridium/enzimologia , Colite/enzimologia , Colite/metabolismo , Colite/microbiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação
10.
Nature ; 595(7867): 415-420, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34262212

RESUMO

Gut microorganisms modulate host phenotypes and are associated with numerous health effects in humans, ranging from host responses to cancer immunotherapy to metabolic disease and obesity. However, difficulty in accurate and high-throughput functional analysis of human gut microorganisms has hindered efforts to define mechanistic connections between individual microbial strains and host phenotypes. One key way in which the gut microbiome influences host physiology is through the production of small molecules1-3, yet progress in elucidating this chemical interplay has been hindered by limited tools calibrated to detect the products of anaerobic biochemistry in the gut. Here we construct a microbiome-focused, integrated mass-spectrometry pipeline to accelerate the identification of microbiota-dependent metabolites in diverse sample types. We report the metabolic profiles of 178 gut microorganism strains using our library of 833 metabolites. Using this metabolomics resource, we establish deviations in the relationships between phylogeny and metabolism, use machine learning to discover a previously undescribed type of metabolism in Bacteroides, and reveal candidate biochemical pathways using comparative genomics. Microbiota-dependent metabolites can be detected in diverse biological fluids from gnotobiotic and conventionally colonized mice and traced back to the corresponding metabolomic profiles of cultured bacteria. Collectively, our microbiome-focused metabolomics pipeline and interactive metabolomics profile explorer are a powerful tool for characterizing microorganisms and interactions between microorganisms and their host.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal , Metaboloma , Metabolômica/métodos , Animais , Bactérias/classificação , Bactérias/genética , Bacteroides/genética , Bacteroides/metabolismo , Genes Bacterianos/genética , Genômica , Interações entre Hospedeiro e Microrganismos , Humanos , Masculino , Camundongos , Nitrogênio/metabolismo , Fenótipo , Filogenia
11.
Cell ; 141(7): 1241-52, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20603004

RESUMO

The intestinal microbiota impacts many facets of human health and is associated with human diseases. Diet impacts microbiota composition, yet mechanisms that link dietary changes to microbiota alterations remain ill-defined. Here we elucidate the basis of Bacteroides proliferation in response to fructans, a class of fructose-based dietary polysaccharides. Structural and genetic analysis disclosed a fructose-binding, hybrid two-component signaling sensor that controls the fructan utilization locus in Bacteroides thetaiotaomicron. Gene content of this locus differs among Bacteroides species and dictates the specificity and breadth of utilizable fructans. BT1760, an extracellular beta2-6 endo-fructanase, distinguishes B. thetaiotaomicron genetically and functionally, and enables the use of the beta2-6-linked fructan levan. The genetic and functional differences between Bacteroides species are predictive of in vivo competitiveness in the presence of dietary fructans. Gene sequences that distinguish species' metabolic capacity serve as potential biomarkers in microbiomic datasets to enable rational manipulation of the microbiota via diet.


Assuntos
Bacteroides/isolamento & purificação , Dieta , Frutanos/metabolismo , Intestinos/microbiologia , Inulina/metabolismo , Metagenoma , Polissacarídeos/metabolismo , Animais , Bacteroides/genética , Bacteroides/metabolismo , Vida Livre de Germes , Camundongos , Modelos Moleculares , Transcrição Gênica , Regulação para Cima
12.
Nature ; 557(7705): 434-438, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29743671

RESUMO

The dense microbial ecosystem in the gut is intimately connected to numerous facets of human biology, and manipulation of the gut microbiota has broad implications for human health. In the absence of profound perturbation, the bacterial strains that reside within an individual are mostly stable over time 1 . By contrast, the fate of exogenous commensal and probiotic strains applied to an established microbiota is variable, generally unpredictable and greatly influenced by the background microbiota2,3. Therefore, analysis of the factors that govern strain engraftment and abundance is of critical importance to the emerging field of microbiome reprogramming. Here we generate an exclusive metabolic niche in mice via administration of a marine polysaccharide, porphyran, and an exogenous Bacteroides strain harbouring a rare gene cluster for porphyran utilization. Privileged nutrient access enables reliable engraftment of the exogenous strain at predictable abundances in mice harbouring diverse communities of gut microbes. This targeted dietary support is sufficient to overcome priority exclusion by an isogenic strain 4 , and enables strain replacement. We demonstrate transfer of the 60-kb porphyran utilization locus into a naive strain of Bacteroides, and show finely tuned control of strain abundance in the mouse gut across multiple orders of magnitude by varying porphyran dosage. Finally, we show that this system enables the introduction of a new strain into the colonic crypt ecosystem. These data highlight the influence of nutrient availability in shaping microbiota membership, expand the ability to perform a broad spectrum of investigations in the context of a complex microbiota, and have implications for cell-based therapeutic strategies in the gut.


Assuntos
Colo/microbiologia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Animais , Bacteroides/crescimento & desenvolvimento , Bacteroides/isolamento & purificação , Bacteroides/fisiologia , Feminino , Humanos , Masculino , Camundongos , Sefarose/análogos & derivados , Sefarose/metabolismo
13.
Infect Immun ; 91(2): e0057022, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36692308

RESUMO

A disrupted "dysbiotic" gut microbiome engenders susceptibility to the diarrheal pathogen Clostridioides difficile by impacting the metabolic milieu of the gut. Diet, in particular the microbiota-accessible carbohydrates (MACs) found in dietary fiber, is one of the most powerful ways to affect the composition and metabolic output of the gut microbiome. As such, diet is a powerful tool for understanding the biology of C. difficile and for developing alternative approaches for coping with this pathogen. One prominent class of metabolites produced by the gut microbiome is short-chain fatty acids (SCFAs), the major metabolic end products of MAC metabolism. SCFAs are known to decrease the fitness of C. difficile in vitro, and high intestinal SCFA concentrations are associated with reduced fitness of C. difficile in animal models of C. difficile infection (CDI). Here, we use controlled dietary conditions (8 diets that differ only by MAC composition) to show that C. difficile fitness is most consistently impacted by butyrate, rather than the other two prominent SCFAs (acetate and propionate), during murine model CDI. We similarly show that butyrate concentrations are lower in fecal samples from humans with CDI than in those from healthy controls. Finally, we demonstrate that butyrate impacts growth in diverse C. difficile isolates. These findings provide a foundation for future work which will dissect how butyrate directly impacts C. difficile fitness and will lead to the development of diverse approaches distinct from antibiotics or fecal transplant, such as dietary interventions, for mitigating CDI in at-risk human populations. IMPORTANCE Clostridioides difficile is a leading cause of infectious diarrhea in humans, and it imposes a tremendous burden on the health care system. Current treatments for C. difficile infection (CDI) include antibiotics and fecal microbiota transplant, which contribute to recurrent CDIs and face major regulatory hurdles, respectively. Therefore, there is an ongoing need to develop new ways to cope with CDI. Notably, a disrupted "dysbiotic" gut microbiota is the primary risk factor for CDI, but we incompletely understand how a healthy microbiota resists CDI. Here, we show that a specific molecule produced by the gut microbiota, butyrate, is negatively associated with C. difficile burdens in humans and in a mouse model of CDI and that butyrate impedes the growth of diverse C. difficile strains in pure culture. These findings help to build a foundation for designing alternative, possibly diet-based, strategies for mitigating CDI in humans.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Humanos , Animais , Camundongos , Butiratos , Permissividade , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ácidos Graxos Voláteis
14.
Diabetes Obes Metab ; 25(5): 1203-1212, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36594522

RESUMO

AIMS: To investigate a prebiotic fibre-enriched nutritional formula on health-related quality of life and metabolic control in type 2 diabetes. MATERIALS AND METHODS: This was a 12-week, double-blind, placebo-controlled study with an unblinded dietary advice only comparator arm. Participants were randomized 2:1:1 to a prebiotic fibre-enriched nutritional formula (Active), a placebo fibre-absent nutritional formula (Placebo), or non-blinded dietary advice alone (Diet). Primary endpoint was change in core Type 2 Diabetes Distress Assessment System (cT2-DDAS) at week 12. Glycated haemoglobin (HbA1c) change was a key secondary endpoint. RESULTS: In total, 192 participants were randomized. Mean age was 54.3 years, HbA1c 7.8%, and body mass index 35.9 kg/m2 . At week 12, cT2-DDAS reduced significantly in Active versus Placebo (-0.4, p = .03), and HbA1c was reduced significantly in Active vs Placebo (-0.64%, p = .01). Gut microbiome sequencing revealed that the relative abundance of two species of butyrate-producing bacteria (Roseburia faecis and Anaerostipes hadrus) increased significantly in Active vs. Placebo. CONCLUSIONS: A microbiome-targeting nutritional formula significantly improved cT2-DDAS and HbA1c, suggesting the potential for prebiotic fibre as a complement to lifestyle and/or pharmaceutical interventions for managing type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hemoglobinas Glicadas , Qualidade de Vida , Prebióticos , Método Duplo-Cego , Hipoglicemiantes/uso terapêutico
15.
Nature ; 551(7682): 648-652, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29168502

RESUMO

The human gut microbiota produces dozens of metabolites that accumulate in the bloodstream, where they can have systemic effects on the host. Although these small molecules commonly reach concentrations similar to those achieved by pharmaceutical agents, remarkably little is known about the microbial metabolic pathways that produce them. Here we use a combination of genetics and metabolic profiling to characterize a pathway from the gut symbiont Clostridium sporogenes that generates aromatic amino acid metabolites. Our results reveal that this pathway produces twelve compounds, nine of which are known to accumulate in host serum. All three aromatic amino acids (tryptophan, phenylalanine and tyrosine) serve as substrates for the pathway, and it involves branching and alternative reductases for specific intermediates. By genetically manipulating C. sporogenes, we modulate serum levels of these metabolites in gnotobiotic mice, and show that in turn this affects intestinal permeability and systemic immunity. This work has the potential to provide the basis of a systematic effort to engineer the molecular output of the gut bacterial community.


Assuntos
Aminoácidos Aromáticos/metabolismo , Closterium/metabolismo , Microbioma Gastrointestinal/fisiologia , Redes e Vias Metabólicas , Metaboloma/fisiologia , Soro/química , Soro/metabolismo , Aminoácidos Aromáticos/sangue , Animais , Análise Química do Sangue , Closterium/genética , Microbioma Gastrointestinal/genética , Vida Livre de Germes , Humanos , Imunidade , Indóis/sangue , Indóis/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Redes e Vias Metabólicas/genética , Metabolômica , Camundongos , Família Multigênica/genética , Permeabilidade , Fenilalanina/metabolismo , Triptofano/metabolismo , Tirosina/metabolismo
16.
Proc Natl Acad Sci U S A ; 117(44): 27509-27515, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077598

RESUMO

Immune checkpoint-blocking antibodies that attenuate immune tolerance have been used to effectively treat cancer, but they can also trigger severe immune-related adverse events. Previously, we found that Bifidobacterium could mitigate intestinal immunopathology in the context of CTLA-4 blockade in mice. Here we examined the mechanism underlying this process. We found that Bifidobacterium altered the composition of the gut microbiota systematically in a regulatory T cell (Treg)-dependent manner. Moreover, this altered commensal community enhanced both the mitochondrial fitness and the IL-10-mediated suppressive functions of intestinal Tregs, contributing to the amelioration of colitis during immune checkpoint blockade.


Assuntos
Doenças Autoimunes/prevenção & controle , Bifidobacterium/imunologia , Microbioma Gastrointestinal/imunologia , Probióticos/administração & dosagem , Linfócitos T Reguladores/imunologia , Animais , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Tolerância Imunológica , Interleucina-10/genética , Interleucina-10/metabolismo , Camundongos , Camundongos Knockout , Linfócitos T Reguladores/metabolismo
17.
Nature ; 535(7610): 56-64, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27383980

RESUMO

It is widely accepted that obesity and associated metabolic diseases, including type 2 diabetes, are intimately linked to diet. However, the gut microbiota has also become a focus for research at the intersection of diet and metabolic health. Mechanisms that link the gut microbiota with obesity are coming to light through a powerful combination of translation-focused animal models and studies in humans. A body of knowledge is accumulating that points to the gut microbiota as a mediator of dietary impact on the host metabolic status. Efforts are focusing on the establishment of causal relationships in people and the prospect of therapeutic interventions such as personalized nutrition.


Assuntos
Dieta , Microbioma Gastrointestinal/fisiologia , Doenças Metabólicas/dietoterapia , Metabolismo , Animais , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Ácidos Graxos/metabolismo , Humanos , Inflamação/dietoterapia , Inflamação/metabolismo , Inflamação/microbiologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/microbiologia , Obesidade/dietoterapia , Obesidade/metabolismo , Obesidade/microbiologia , Medicina de Precisão/métodos , Transdução de Sinais
18.
Nature ; 594(7862): 182-183, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34007025
19.
Nature ; 529(7585): 212-5, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26762459

RESUMO

The gut is home to trillions of microorganisms that have fundamental roles in many aspects of human biology, including immune function and metabolism. The reduced diversity of the gut microbiota in Western populations compared to that in populations living traditional lifestyles presents the question of which factors have driven microbiota change during modernization. Microbiota-accessible carbohydrates (MACs) found in dietary fibre have a crucial involvement in shaping this microbial ecosystem, and are notably reduced in the Western diet (high in fat and simple carbohydrates, low in fibre) compared with a more traditional diet. Here we show that changes in the microbiota of mice consuming a low-MAC diet and harbouring a human microbiota are largely reversible within a single generation. However, over several generations, a low-MAC diet results in a progressive loss of diversity, which is not recoverable after the reintroduction of dietary MACs. To restore the microbiota to its original state requires the administration of missing taxa in combination with dietary MAC consumption. Our data illustrate that taxa driven to low abundance when dietary MACs are scarce are inefficiently transferred to the next generation, and are at increased risk of becoming extinct within an isolated population. As more diseases are linked to the Western microbiota and the microbiota is targeted therapeutically, microbiota reprogramming may need to involve strategies that incorporate dietary MACs as well as taxa not currently present in the Western gut.


Assuntos
Dieta/efeitos adversos , Extinção Biológica , Microbioma Gastrointestinal , Adulto , Animais , Bacteroidetes/efeitos dos fármacos , Carboidratos da Dieta/administração & dosagem , Fibras na Dieta/administração & dosagem , Transplante de Microbiota Fecal , Feminino , Fermentação/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Vida Livre de Germes , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Linhagem
20.
Proc Natl Acad Sci U S A ; 116(9): 3688-3694, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808756

RESUMO

Sepsis is a deleterious immune response to infection that leads to organ failure and is the 11th most common cause of death worldwide. Despite plaguing humanity for thousands of years, the host factors that regulate this immunological response and subsequent sepsis severity and outcome are not fully understood. Here we describe how the Western diet (WD), a diet high in fat and sucrose and low in fiber, found rampant in industrialized countries, leads to worse disease and poorer outcomes in an LPS-driven sepsis model in WD-fed mice compared with mice fed standard fiber-rich chow (SC). We find that WD-fed mice have higher baseline inflammation (metaflammation) and signs of sepsis-associated immunoparalysis compared with SC-fed mice. WD mice also have an increased frequency of neutrophils, some with an "aged" phenotype, in the blood during sepsis compared with SC mice. Importantly, we found that the WD-dependent increase in sepsis severity and higher mortality is independent of the microbiome, suggesting that the diet may be directly regulating the innate immune system through an unknown mechanism. Strikingly, we could predict LPS-driven sepsis outcome by tracking specific WD-dependent disease factors (e.g., hypothermia and frequency of neutrophils in the blood) during disease progression and recovery. We conclude that the WD is reprogramming the basal immune status and acute response to LPS-driven sepsis and that this correlates with alternative disease paths that lead to more severe disease and poorer outcomes.


Assuntos
Dieta Ocidental/efeitos adversos , Microbiota/imunologia , Sepse/dietoterapia , Sepse/imunologia , Animais , Modelos Animais de Doenças , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/microbiologia , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Microbiota/efeitos dos fármacos , Sepse/induzido quimicamente , Sepse/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA