Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 73(5): 915-929.e6, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849395

RESUMO

DNA replication errors generate complex chromosomal rearrangements and thereby contribute to tumorigenesis and other human diseases. One mechanism that triggers these errors is mitotic entry before the completion of DNA replication. To address how mitosis might affect DNA replication, we used Xenopus egg extracts. When mitotic CDK (Cyclin B1-CDK1) is used to drive interphase egg extracts into a mitotic state, the replicative CMG (CDC45/MCM2-7/GINS) helicase undergoes ubiquitylation on its MCM7 subunit, dependent on the E3 ubiquitin ligase TRAIP. Whether replisomes have stalled or undergone termination, CMG ubiquitylation is followed by its extraction from chromatin by the CDC48/p97 ATPase. TRAIP-dependent CMG unloading during mitosis is also seen in C. elegans early embryos. At stalled forks, CMG removal results in fork breakage and end joining events involving deletions and templated insertions. Our results identify a mitotic pathway of global replisome disassembly that can trigger replication fork collapse and DNA rearrangements.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclina B1/metabolismo , Dano ao DNA , Replicação do DNA , DNA/biossíntese , Rearranjo Gênico , Mitose , Proteínas Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Ciclina B1/genética , DNA/genética , Reparo do DNA , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo , DNA Polimerase teta
2.
EMBO J ; 40(17): e108053, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34269473

RESUMO

The eukaryotic replisome is rapidly disassembled during DNA replication termination. In metazoa, the cullin-RING ubiquitin ligase CUL-2LRR-1 drives ubiquitylation of the CMG helicase, leading to replisome disassembly by the p97/CDC-48 "unfoldase". Here, we combine in vitro reconstitution with in vivo studies in Caenorhabditis elegans embryos, to show that the replisome-associated TIMELESS-TIPIN complex is required for CUL-2LRR-1 recruitment and efficient CMG helicase ubiquitylation. Aided by TIMELESS-TIPIN, CUL-2LRR-1 directs a suite of ubiquitylation enzymes to ubiquitylate the MCM-7 subunit of CMG. Subsequently, the UBXN-3 adaptor protein directly stimulates the disassembly of ubiquitylated CMG by CDC-48_UFD-1_NPL-4. We show that UBXN-3 is important in vivo for replisome disassembly in the absence of TIMELESS-TIPIN. Correspondingly, co-depletion of UBXN-3 and TIMELESS causes profound synthetic lethality. Since the human orthologue of UBXN-3, FAF1, is a candidate tumour suppressor, these findings suggest that manipulation of CMG disassembly might be applicable to future strategies for treating human cancer.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Complexos Multienzimáticos/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas Culina/genética , Proteínas Culina/metabolismo , Mutações Sintéticas Letais
3.
Mol Cell ; 44(1): 85-96, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21981920

RESUMO

Faithful transmission of genomic information requires tight spatiotemporal regulation of DNA replication factors. In the licensing step of DNA replication, CDT-1 is loaded onto chromatin to subsequently promote the recruitment of additional replication factors, including CDC-45 and GINS. During the elongation step, the CDC-45/GINS complex moves with the replication fork; however, it is largely unknown how its chromatin association is regulated. Here, we show that the chaperone-like ATPase CDC-48/p97 coordinates degradation of CDT-1 with release of the CDC-45/GINS complex. C. elegans embryos lacking CDC-48 or its cofactors UFD-1/NPL-4 accumulate CDT-1 on mitotic chromatin, indicating a critical role of CDC-48 in CDT-1 turnover. Strikingly, CDC-48(UFD-1/NPL-4)-deficient embryos show persistent chromatin association of CDC-45/GINS, which is a consequence of CDT-1 stabilization. Moreover, our data confirmed a similar regulation in Xenopus egg extracts, emphasizing a conserved coordination of licensing and elongation events during eukaryotic DNA replication by CDC-48/p97.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA , Ligases/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Caenorhabditis elegans , Masculino , Mitose , Interferência de RNA , Espermatozoides/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/química , Ubiquitina/metabolismo , Proteína com Valosina , Xenopus laevis
4.
PLoS Genet ; 12(3): e1005872, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27010650

RESUMO

Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Meiose/genética , Recombinação Genética , Animais , Caenorhabditis elegans/genética , Cromossomos/genética , Humanos , Complexos Multiproteicos/genética
5.
PLoS Genet ; 9(7): e1003591, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23901331

RESUMO

Holliday junctions (HJs) are cruciform DNA structures that are created during recombination events. It is a matter of considerable importance to determine the resolvase(s) that promote resolution of these structures. We previously reported that C. elegans GEN-1 is a symmetrically cleaving HJ resolving enzyme required for recombinational repair, but we could not find an overt role in meiotic recombination. Here we identify C. elegans proteins involved in resolving meiotic HJs. We found no evidence for a redundant meiotic function of GEN-1. In contrast, we discovered two redundant HJ resolution pathways likely coordinated by the SLX-4 scaffold protein and also involving the HIM-6/BLM helicase. SLX-4 associates with the SLX-1, MUS-81 and XPF-1 nucleases and has been implicated in meiotic recombination in C. elegans. We found that C. elegans [mus-81; xpf-1], [slx-1; xpf-1], [mus-81; him-6] and [slx-1; him-6] double mutants showed a similar reduction in survival rates as slx-4. Analysis of meiotic diakinesis chromosomes revealed a distinct phenotype in these double mutants. Instead of wild-type bivalent chromosomes, pairs of "univalents" linked by chromatin bridges occur. These linkages depend on the conserved meiosis-specific transesterase SPO-11 and can be restored by ionizing radiation, suggesting that they represent unresolved meiotic HJs. This suggests the existence of two major resolvase activities, one provided by XPF-1 and HIM-6, the other by SLX-1 and MUS-81. In all double mutants crossover (CO) recombination is reduced but not abolished, indicative of further redundancy in meiotic HJ resolution. Real time imaging revealed extensive chromatin bridges during the first meiotic division that appear to be eventually resolved in meiosis II, suggesting back-up resolution activities acting at or after anaphase I. We also show that in HJ resolution mutants, the restructuring of chromosome arms distal and proximal to the CO still occurs, suggesting that CO initiation but not resolution is likely to be required for this process.


Assuntos
Proteínas de Caenorhabditis elegans/genética , DNA Helicases/genética , DNA Cruciforme/genética , Proteínas de Ligação a DNA/genética , Desoxirribonucleases/genética , Endonucleases/genética , Meiose/genética , Animais , Caenorhabditis elegans/genética , Cromatina/genética , Segregação de Cromossomos/genética , Troca Genética , Quebras de DNA de Cadeia Dupla , Humanos , Prófase Meiótica I/genética , Camundongos , Mutação , Recombinação Genética
6.
Science ; 381(6664): eadi4932, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590372

RESUMO

Assembly of the CMG (CDC-45-MCM-2-7-GINS) helicase is the key regulated step during eukaryotic DNA replication initiation. Until now, it was unclear whether metazoa require additional factors that are not present in yeast. In this work, we show that Caenorhabditis elegans DNSN-1, the ortholog of human DONSON, functions during helicase assembly in a complex with MUS-101/TOPBP1. DNSN-1 is required to recruit the GINS complex to chromatin, and a cryo-electron microscopy structure indicates that DNSN-1 positions GINS on the MCM-2-7 helicase motor (comprising the six MCM-2 to MCM-7 proteins), by direct binding of DNSN-1 to GINS and MCM-3, using interfaces that we show are important for initiation and essential for viability. These findings identify DNSN-1 as a missing link in our understanding of DNA replication initiation, suggesting that initiation defects underlie the human disease syndrome that results from DONSON mutations.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Replicação do DNA , Proteínas de Manutenção de Minicromossomo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Microscopia Crioeletrônica , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Domínios Proteicos
7.
Dev Cell ; 4(6): 853-64, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12791270

RESUMO

The Drosophila compound eye consists of approximately 750 independently functioning ommatidia, each containing two photoreceptor subpopulations. The outer photoreceptors participate in motion detection, while the inner photoreceptors contribute to color vision. Although the inner photoreceptors, R7 and R8, terminally differentiate into functionally related cells, they differ in their molecular and morphological makeup. Our data indicates that several aspects of R7 versus R8 cell fate determination are regulated by the transcription factor Prospero (Pros). pros is specifically expressed in R7 cells, and R7 cells mutant for pros derepress R8 rhodopsins, lose R7 rhodopsins and acquire an R8-like morphology. This suggests that R7 inner photoreceptor cell fate is acquired from a default R8-like fate that is regulated, in part, via the direct transcriptional repression of R8 rhodopsins in R7 cells. Furthermore, this study provides transcriptional targets for pros that may lend insight into its role in regulating neuronal development in flies and vertebrates.


Assuntos
Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Células Fotorreceptoras de Invertebrados/embriologia , Pigmentos da Retina , Rodopsina/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Diferenciação Celular , Núcleo Celular/metabolismo , Genes de Insetos , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Células Fotorreceptoras de Invertebrados/citologia , Regiões Promotoras Genéticas , Rodopsina/química , Rodopsina/genética , Homologia de Sequência de Aminoácidos
8.
Dev Cell ; 5(3): 391-402, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12967559

RESUMO

Comparison between the inputs of photoreceptors with different spectral sensitivities is required for color vision. In Drosophila, this is achieved in each ommatidium by the inner photoreceptors R7 and R8. Two classes of ommatidia are distributed stochastically in the retina: 30% contain UV-Rh3 in R7 and blue-Rh5 in R8, while the remaining 70% contain UV-Rh4 in R7 and green-Rh6 in R8. We show here that the distinction between the rhodopsins expressed in the two classes of ommatidia depends on a series of highly conserved homeodomain binding sites present in the rhodopsin promoters. The homeoprotein Orthodenticle acts through these sites to activate rh3 and rh5 in their specific ommatidial subclass and through the same sites to prevent rh6 expression in outer photoreceptors. Therefore, Otd is a key player in the terminal differentiation of subtypes of photoreceptors by regulating rhodopsin expression, a function reminiscent of the role of one of its mammalian homologs, Crx, in eye development.


Assuntos
Proteínas de Drosophila , Proteínas de Homeodomínio/fisiologia , Retina/citologia , Rodopsina/genética , Transativadores/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila melanogaster , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Proteínas de Fluorescência Verde , Imuno-Histoquímica/métodos , Proteínas Luminescentes/metabolismo , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Mutação , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Rodopsina/classificação , Rodopsina/metabolismo , Rodopsina/fisiologia , Fatores de Tempo
9.
Elife ; 82019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31545170

RESUMO

The faithful segregation of eukaryotic chromosomes in mitosis requires that the genome be duplicated completely prior to anaphase. However, cells with large genomes sometimes fail to complete replication during interphase and instead enter mitosis with regions of incompletely replicated DNA. These regions are processed in early mitosis via a process known as mitotic DNA repair synthesis (MiDAS), but little is known about how cells switch from conventional DNA replication to MiDAS. Using the early embryo of the nematode Caenorhabditis elegans as a model system, we show that the TRAIP ubiquitin ligase drives replisome disassembly in response to incomplete DNA replication, thereby providing access to replication forks for other factors. Moreover, TRAIP is essential for MiDAS in human cells, and is important in both systems to prevent mitotic segregation errors. Our data indicate that TRAIP is a master regulator of the processing of incomplete DNA replication during mitosis in metazoa.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Reparo do DNA , Replicação do DNA , Mitose , Ubiquitina-Proteína Ligases/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular , Deleção de Genes , Humanos , Ubiquitina-Proteína Ligases/genética
10.
Nat Commun ; 9(1): 728, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463814

RESUMO

Faithful chromosome segregation and genome maintenance requires the removal of all DNA bridges that physically link chromosomes before cells divide. Using C. elegans embryos we show that the LEM-3/Ankle1 nuclease defines a previously undescribed genome integrity mechanism by processing DNA bridges right before cells divide. LEM-3 acts at the midbody, the structure where abscission occurs at the end of cytokinesis. LEM-3 localization depends on factors needed for midbody assembly, and LEM-3 accumulation is increased and prolonged when chromatin bridges are trapped at the cleavage plane. LEM-3 locally processes chromatin bridges that arise from incomplete DNA replication, unresolved recombination intermediates, or the perturbance of chromosome structure. Proper LEM-3 midbody localization and function is regulated by AIR-2/Aurora B kinase. Strikingly, LEM-3 acts cooperatively with the BRC-1/BRCA1 homologous recombination factor to promote genome integrity. These findings provide a molecular basis for the suspected role of the LEM-3 orthologue Ankle1 in human breast cancer.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Cromatina/metabolismo , Endodesoxirribonucleases/metabolismo , Mitose , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cromatina/genética , Citocinese , DNA/genética , DNA/metabolismo , Replicação do DNA , Endodesoxirribonucleases/genética
11.
Nat Cell Biol ; 19(5): 468-479, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28368371

RESUMO

Replisome disassembly is the final step of DNA replication in eukaryotes, involving the ubiquitylation and CDC48-dependent dissolution of the CMG helicase (CDC45-MCM-GINS). Using Caenorhabditis elegans early embryos and Xenopus laevis egg extracts, we show that the E3 ligase CUL-2LRR-1 associates with the replisome and drives ubiquitylation and disassembly of CMG, together with the CDC-48 cofactors UFD-1 and NPL-4. Removal of CMG from chromatin in frog egg extracts requires CUL2 neddylation, and our data identify chromatin recruitment of CUL2LRR1 as a key regulated step during DNA replication termination. Interestingly, however, CMG persists on chromatin until prophase in worms that lack CUL-2LRR-1, but is then removed by a mitotic pathway that requires the CDC-48 cofactor UBXN-3, orthologous to the human tumour suppressor FAF1. Partial inactivation of lrr-1 and ubxn-3 leads to synthetic lethality, suggesting future approaches by which a deeper understanding of CMG disassembly in metazoa could be exploited therapeutically.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Proteínas de Transporte/metabolismo , Cromatina/enzimologia , Proteínas Culina/metabolismo , DNA/biossíntese , Mitose , Fase S , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Montagem e Desmontagem da Cromatina , Proteínas Culina/genética , DNA/genética , Genótipo , Complexos Multiproteicos , Oócitos , Fenótipo , Interferência de RNA , Fatores de Tempo , Ubiquitinação , Proteína com Valosina , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
13.
Cell Rep ; 12(3): 405-17, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26166571

RESUMO

During cell division, chromatin alternates between a condensed state to facilitate chromosome segregation and a decondensed form when DNA replicates. In most tissues, S phase and mitosis are separated by defined G1 and G2 gap phases, but early embryogenesis involves rapid oscillations between replication and mitosis. Using Caenorhabditis elegans embryos as a model system, we show that chromosome condensation and condensin II concentration on chromosomal axes require replicated DNA. In addition, we found that, during late telophase, replication initiates on condensed chromosomes and promotes the rapid decondensation of the chromatin. Upon replication initiation, the CDC-45-MCM-GINS (CMG) DNA helicase drives the release of condensin I complexes from chromatin and the activation or displacement of inactive MCM-2-7 complexes, which together with the nucleoporin MEL-28/ELYS tethers condensed chromatin to the nuclear envelope, thereby promoting chromatin decondensation. Our results show how, in an early embryo, the chromosome-condensation cycle is functionally linked with DNA replication.


Assuntos
Cromossomos/fisiologia , Replicação do DNA/fisiologia , Adenosina Trifosfatases/metabolismo , Animais , Caenorhabditis elegans , Pontos de Checagem do Ciclo Celular/fisiologia , Cromátides/metabolismo , Cromatina/metabolismo , Cromossomos/genética , Cromossomos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo
14.
Nat Commun ; 5: 5485, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25475837

RESUMO

The small ubiquitin-like modifier (SUMO), initially characterized as a suppressor of a mutation in the gene encoding the centromeric protein MIF2, is involved in many aspects of cell cycle regulation. The dynamics of conjugation and deconjugation and the role of SUMO during the cell cycle remain unexplored. Here we used Caenorhabditis elegans to establish the contribution of SUMO to a timely and accurate cell division. Chromatin-associated SUMO conjugates increase during metaphase but decrease rapidly during anaphase. Accumulation of SUMO conjugates on the metaphase plate and proper chromosome alignment depend on the SUMO E2 conjugating enzyme UBC-9 and SUMO E3 ligase PIAS(GEI-17). Deconjugation is achieved by the SUMO protease ULP-4 and is crucial for correct progression through the cell cycle. Moreover, ULP-4 is necessary for Aurora B(AIR-2) extraction from chromatin and relocation to the spindle mid-zone. Our results show that dynamic SUMO conjugation plays a role in cell cycle progression.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Cromossomos/genética , Mitose , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Cromossomos/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
15.
J Cell Biol ; 196(2): 233-46, 2012 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-22249291

RESUMO

Accurate DNA replication requires proper regulation of replication licensing, which entails loading MCM-2-7 onto replication origins. In this paper, we provide the first comprehensive view of replication licensing in vivo, using video microscopy of Caenorhabditis elegans embryos. As expected, MCM-2-7 loading in late M phase depended on the prereplicative complex (pre-RC) proteins: origin recognition complex (ORC), CDC-6, and CDT-1. However, many features we observed have not been described before: GFP-ORC-1 bound chromatin independently of ORC-2-5, and CDC-6 bound chromatin independently of ORC, whereas CDT-1 and MCM-2-7 DNA binding was interdependent. MCM-3 chromatin loading was irreversible, but CDC-6 and ORC turned over rapidly, consistent with ORC/CDC-6 loading multiple MCM-2-7 complexes. MCM-2-7 chromatin loading further reduced ORC and CDC-6 DNA binding. This dynamic behavior creates a feedback loop allowing ORC/CDC-6 to repeatedly load MCM-2-7 and distribute licensed origins along chromosomal DNA. During S phase, ORC and CDC-6 were excluded from nuclei, and DNA was overreplicated in export-defective cells. Thus, nucleocytoplasmic compartmentalization of licensing factors ensures that DNA replication occurs only once.


Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Replicação do DNA , Embrião não Mamífero/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Cromatina/metabolismo , DNA/metabolismo , Ligases/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Imagem com Lapso de Tempo
17.
Development ; 131(15): 3527-43, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15215208

RESUMO

The mechanisms that ensure coupling between meiotic cell cycle progression and subsequent developmental events, including specification of embryonic axes, are poorly understood. Here, we establish that zyg-11 and the cullin cul-2 promote the metaphase-to-anaphase transition and M phase exit at meiosis II in Caenorhabditis elegans. Our results indicate that ZYG-11 acts with a CUL-2-based E3 ligase that is essential at meiosis II and that functions redundantly with the anaphase-promoting complex/cyclosome at meiosis I. Our data also indicate that delayed M phase exit in zyg-11(RNAi) embryos is due to accumulation of the B type cyclin CYB-3. We demonstrate that PAR proteins and P granules become polarized in an inverted manner during the meiosis II delay resulting from zyg-11 or cul-2 inactivation, and that zyg-11 and cul-2 can regulate polarity establishment independently of a role in cell cycle progression. Furthermore, we find that microtubules appear dispensable for ectopic polarity during the meiosis II delay in zyg-11(RNAi) embryos, as well as for AP polarity during the first mitotic cell cycle in wild-type embryos. Our findings suggest a model in which a CUL-2-based E3 ligase promotes cell cycle progression and prevents polarity establishment during meiosis II, and in which the centrosome acts as a cue to polarize the embryo along the AP axis after exit from the meiotic cell cycle.


Assuntos
Padronização Corporal , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Culina/metabolismo , Ciclina B/metabolismo , Meiose/fisiologia , Animais , Biomarcadores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Polaridade Celular , Proteínas Culina/genética , Ciclina B/genética , Ciclina B1 , Citoesqueleto/metabolismo , Feminino , Microtúbulos/metabolismo , Morfogênese , Proteínas Nucleares/metabolismo , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA