Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Anal Biochem ; 684: 115374, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914005

RESUMO

The overexpression and/or amplification of the HER2/neu oncogene has been proposed as a prognostic marker in breast cancer. The detection of the related peptide HER2 remains a grand challenge in cancer diagnosis and for therapeutic decision-making. Here, we used a biosensing device based on Bloch Surface Waves excited on a one-dimensional photonic crystal (1DPC) as valid alternative to standard techniques. The 1DPC was optimized to operate in the visible spectrum and the biosensor optics has been designed to combine label-free and fluorescence operation modes. This feature enables a real-time monitoring of a direct competitive assay using detection mAbs conjugated with quantum dots for an accurate discrimination in fluorescence mode between HER2-positive/negative human plasma samples. Such a competitive assay was implemented using patterned alternating areas where HER2-Fc chimera and reference molecules were bio-conjugated and monitored in a multiplexed way. By combining Label-Free and fluorescence detection analysis, we were able to tune the parameters of the assay and provide an HER2 detection in human plasma in less than 20 min, allowing for a cost-effective assay and rapid turnaround time. The proposed approach offers a promising technique capable of performing combined label-free and fluorescence detection for both diagnosis and therapeutic monitoring of diseases.


Assuntos
Técnicas Biossensoriais , Receptor ErbB-2 , Humanos , Receptor ErbB-2/sangue , Fluorescência , Anticorpos Monoclonais/química , Dispositivos Lab-On-A-Chip , Análise Serial de Proteínas
2.
Antonie Van Leeuwenhoek ; 116(12): 1285-1294, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37751033

RESUMO

Methylorubrum extorquens is an important model methylotroph and has enormous potential for the development of C1-based microbial cell factories. During strain construction, regulated promoters with a low background expression level are important genetic tools for expression of potentially toxic genes. Here we present an accordingly optimised promoter, which can be used for that purpose. During construction and testing of terpene production strains harbouring a recombinant mevalonate pathway, strong growth defects were observed which made strain development impossible. After isolation and characterisation of suppressor mutants, we discovered a variant of the cumate-inducible promoter PQ2148 used in this approach. Deletion of 28 nucleotides resulted in an extremely low background expression level, but also reduced the maximal expression strength to about 30% of the original promoter. This tightly repressed promoter version is a powerful module for controlled expression of potentially toxic genes in M. extorquens.


Assuntos
Methylobacterium extorquens , Regiões Promotoras Genéticas , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo , Metanol/metabolismo
3.
Metab Eng ; 32: 82-94, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26369439

RESUMO

Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the sesquiterpenoids armopha-1,4-diene, farnesene and artemisinic acid as prime examples. However, almost all cell factory approaches towards terpenoids to date have been based on sugar as the raw material, which is mainly used as a food resource and subject to high price volatilities. In this study we present de novo synthesis of the sesquiterpenoid α-humulene from the abundantly available non-food carbon source methanol by metabolically engineered Methylobacterium extorquens AM1. Expression of α-humulene synthase from Zingiber zerumbet in combination with farnesyl pyrophosphate (FPP) synthase from Saccharomyces cerevisiae led to concentrations of up to 18 mg/L α-humulene. Introduction of a prokaryotic mevalonate pathway from Myxococcus xanthus in combination with ribosome binding site optimization of α-humulene and FPP synthases increased product concentration 3-fold. This value was additionally raised by 30% using a carotenoid synthesis deficient mutant strain. Final product concentrations of up to 1.65 g/L were obtained in methanol limited fed-batch cultivations, which is the highest titer of de novo synthesized α-humulene reported to date. This study demonstrates the potential of M. extorquens as a future platform strain for the production of high-value terpenoids from the alternative carbon source methanol.


Assuntos
Engenharia Metabólica/métodos , Metanol/metabolismo , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo , Sesquiterpenos/metabolismo , Reatores Biológicos , Carotenoides/biossíntese , Simulação por Computador , Meios de Cultura , Fermentação , Redes e Vias Metabólicas/genética , Ácido Mevalônico/metabolismo , Sesquiterpenos Monocíclicos , Plasmídeos
4.
Protein Expr Purif ; 105: 61-70, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450238

RESUMO

For the first time, the full length recombinant HER-2[neu] receptor has been produced in a yeast (Arxula adeninivorans). It is one of the most studied membrane receptors in oncology and is involved in aggressive tumor formation. A yeast integration rDNA cassette containing the human gene coding for the HER-2[neu] protein was constructed and a screening procedure was performed to select the most productive transformant. Different detergents were tested for efficient solubilization of the membrane bound protein, with CHAPS giving the best results. To increase the yield of the recombinant protein from HER-2[neu] producing A. adeninivorans, optimal culture parameters were established for cultivation in bioreactor. The recombinant protein was subsequently assayed using ELISA and SPR immunoassays systems with antibodies raised against two different epitopes of the human receptor. In both cases, elution fractions containing the recombinant HER-2[neu] receptor successfully reacted with the immunoassays with limits of quantification below 100ngml(-1). These results demonstrate that the full length recombinant HER-2[neu] reported here has the potential to be a new standard for the detection of HER-2 type cancer.


Assuntos
Receptor ErbB-2/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética , Ensaio de Imunoadsorção Enzimática , Humanos , Receptor ErbB-2/análise , Receptor ErbB-2/química , Receptor ErbB-2/genética , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ressonância de Plasmônio de Superfície
5.
Environ Sci Technol ; 49(10): 6018-28, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25909816

RESUMO

Halogenated homo- and heterocyclic aromatics including disinfectants, pesticides and pharmaceuticals raise concern as persistent and toxic contaminants with often unknown fate. Remediation strategies and natural attenuation in anaerobic environments often build on microbial reductive dehalogenation. Here we describe the transformation of halogenated anilines, benzonitriles, phenols, methoxylated, or hydroxylated benzoic acids, pyridines, thiophenes, furoic acids, and benzenes by Dehalococcoides mccartyi strain CBDB1 and environmental fate modeling of the dehalogenation pathways. The compounds were chosen based on structural considerations to investigate the influence of functional groups present in a multitude of commercially used halogenated aromatics. Experimentally obtained growth yields were 0.1 to 5 × 10(14) cells mol(-1) of halogen released (corresponding to 0.3-15.3 g protein mol(-1) halogen), and specific enzyme activities ranged from 4.5 to 87.4 nkat mg(-1) protein. Chlorinated electron-poor pyridines were not dechlorinated in contrast to electron-rich thiophenes. Three different partial charge models demonstrated that the regioselective removal of halogens is governed by the least negative partial charge of the halogen. Microbial reaction pathways combined with computational chemistry and pertinent literature findings on Co(I) chemistry suggest that halide expulsion during reductive dehalogenation is initiated through single electron transfer from B12Co(I) to the apical halogen site.


Assuntos
Biodegradação Ambiental , Chloroflexi/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Hidrocarbonetos Halogenados/metabolismo , Anaerobiose , Elétrons
6.
Appl Microbiol Biotechnol ; 99(2): 517-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25432674

RESUMO

Methylotrophy is the ability to use reduced one-carbon compounds, such as methanol, as a single source of carbon and energy. Methanol is, due to its availability and potential for production from renewable resources, a valuable feedstock for biotechnology. Nature offers a variety of methylotrophic microorganisms that differ in their metabolism and represent resources for engineering of value-added products from methanol. The most extensively studied methylotroph is the Alphaproteobacterium Methylobacterium extorquens. Over the past five decades, the metabolism of M. extorquens has been investigated physiologically, biochemically, and more recently, using complementary omics technologies such as transcriptomics, proteomics, metabolomics, and fluxomics. These approaches, together with a genome-scale metabolic model, facilitate system-wide studies and the development of rational strategies for the successful generation of desired products from methanol. This review summarizes the knowledge of methylotrophy in M. extorquens, as well as the available tools and biotechnological applications.


Assuntos
Genoma Bacteriano , Microbiologia Industrial , Methylobacterium extorquens/metabolismo , Carbono/química , Meios de Cultura/química , Formaldeído/metabolismo , Metabolômica/métodos , Metanol/metabolismo , Methylobacterium extorquens/genética , Modelos Moleculares , Proteômica/métodos
7.
Appl Microbiol Biotechnol ; 99(8): 3407-19, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25661812

RESUMO

Bio-based production of dicarboxylic acids is an emerging research field with remarkable progress during the last decades. The recently established synthesis of the ethylmalonyl-CoA pathway (EMCP)-derived dicarboxylic acids, mesaconic acid and (2S)-methylsuccinic acid, from the alternative carbon source methanol (Sonntag et al., Appl Microbiol Biotechnol 98:4533-4544, 2014) gave a proof of concept for the sustainable production of hitherto biotechnologically inaccessible monomers. In this study, substantial optimizations of the process by different approaches are presented. Abolishment of mesaconic and (2S)-methylsuccinic acid reuptake from culture supernatant and a productivity increase were achieved by 30-fold decreased sodium ion availability in culture medium. Undesired flux from EMCP into polyhydroxybutyrate (PHB) cycle was hindered by the knockout of polyhydroxyalkanoate synthase phaC which was concomitant with 5-fold increased product concentrations. However, frequently occurring suppressors of strain ΔphaC lost their beneficial properties probably due to redirected channeling of acetyl-CoA. Pool sizes of the product precursors were increased by exploiting the presence of two cobalt-dependent mutases in the EMCP: Fine-tuned growth-limiting cobalt concentrations led to 16-fold accumulation of mesaconyl- and (2S)-methylsuccinyl-CoA which in turn resulted in 6-fold increased concentrations of mesaconic and (2S)-methylsuccinic acids, with a combined titer of 0.65 g/l, representing a yield of 0.17 g/g methanol. This work represents an important step toward an industrially relevant production of ethylmalonyl-CoA pathway-derived dicarboxylic acids and the generation of a stable PHB synthesis negative Methylobacterium extorquens strain.


Assuntos
Acil Coenzima A/metabolismo , Cobalto/deficiência , Cobalto/metabolismo , Ácidos Dicarboxílicos/metabolismo , Hidroxibutiratos/metabolismo , Methylobacterium extorquens/metabolismo , Poliésteres/metabolismo , Biotecnologia/métodos , Meios de Cultura/química , Técnicas de Inativação de Genes , Engenharia Metabólica/métodos
8.
Appl Microbiol Biotechnol ; 98(10): 4533-44, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24419796

RESUMO

The ethylmalonyl-coenzyme A pathway (EMCP) is a recently discovered pathway present in diverse α-proteobacteria such as the well studied methylotroph Methylobacterium extorquens AM1. Its glyoxylate regeneration function is obligatory during growth on C1 carbon sources like methanol. The EMCP contains special CoA esters, of which dicarboxylic acid derivatives are of high interest as building blocks for chemical industry. The possible production of dicarboxylic acids out of the alternative, non-food competing C-source methanol could lead to sustainable and economic processes. In this work we present a testing of functional thioesterases being active towards the EMCP CoA esters including in vitro enzymatic assays and in vivo acid production. Five thioesterases including TesB from Escherichia coli and M. extorquens, YciA from E. coli, Bch from Bacillus subtilis and Acot4 from Mus musculus showed activity towards EMCP CoA esters in vitro at which YciA was most active. Expressing yciA in M. extorquens AM1 led to release of 70 mg/l mesaconic and 60 mg/l methylsuccinic acid into culture supernatant during exponential growth phase. Our data demonstrates the biotechnological applicability of the thioesterase YciA and the possibility of EMCP dicarboxylic acid production from methanol using M. extorquens AM1.


Assuntos
Acil Coenzima A/metabolismo , Ácidos Dicarboxílicos/metabolismo , Methylobacterium extorquens/enzimologia , Methylobacterium extorquens/metabolismo , Tioléster Hidrolases/metabolismo , Animais , Meios de Cultura/química , Escherichia coli/enzimologia , Escherichia coli/genética , Methylobacterium extorquens/genética , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tioléster Hidrolases/genética
9.
Biomedicines ; 11(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37509683

RESUMO

Despite disadvantages, such as high cost and their poor predictive value, animal experiments are still the state of the art for pharmaceutical substance testing. One reason for this problem is the inability of standard cell culture methods to emulate the physiological environment necessary to recapitulate in vivo processes. Microphysiological systems offer the opportunity to close this gap. In this study, we utilize a previously employed microphysiological system to examine the impact of pressure and flow on the transportation of substances mediated by multidrug resistance protein 1 (MDR1) across an artificial cell-based tubular barrier. By using a miniaturized fluorescence measurement device, we could continuously track the MDR1-mediated transport of rhodamine 123 above the artificial barrier over 48 h. We proved that applying pressure and flow affects both active and passive transport of rhodamine 123. Using experimental results and curve fittings, the kinetics of MDR1-mediated transport as well as passive transport were investigated; thus, a kinetic model that explains this transport above an artificial tubular barrier was identified. This kinetic model demonstrates that the simple Michaelis-Menten model is not an appropriate model to explain the MDR1-mediated transport; instead, Hill kinetics, with Hill slope of n = 2, is a better fit. The kinetic values, Km, Vmax, and apparent permeability (Papp), obtained in this study are comparable with other in vivo and in vitro studies. Finally, the presented proximal tubule-on-a-chip can be used for pharmaceutical substance testing and to investigate pharmacokinetics of the renal transporter MDR1.

10.
J Biol Eng ; 17(1): 60, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770970

RESUMO

BACKGROUND: Calcific aortic valve disease (CAVD) causes an increasing health burden in the 21st century due to aging population. The complex pathophysiology remains to be understood to develop novel prevention and treatment strategies. Microphysiological systems (MPSs), also known as organ-on-chip or lab-on-a-chip systems, proved promising in bridging in vitro and in vivo approaches by applying integer AV tissue and modelling biomechanical microenvironment. This study introduces a novel MPS comprising different micropumps in conjunction with a tissue-incubation-chamber (TIC) for long-term porcine and human AV incubation (pAV, hAV). RESULTS: Tissue cultures in two different MPS setups were compared and validated by a bimodal viability analysis and extracellular matrix transformation assessment. The MPS-TIC conjunction proved applicable for incubation periods of 14-26 days. An increased metabolic rate was detected for pulsatile dynamic MPS culture compared to static condition indicated by increased LDH intensity. ECM changes such as an increase of collagen fibre content in line with tissue contraction and mass reduction, also observed in early CAVD, were detected in MPS-TIC culture, as well as an increase of collagen fibre content. Glycosaminoglycans remained stable, no significant alterations of α-SMA or CD31 epitopes and no accumulation of calciumhydroxyapatite were observed after 14 days of incubation. CONCLUSIONS: The presented ex vivo MPS allows long-term AV tissue incubation and will be adopted for future investigation of CAVD pathophysiology, also implementing human tissues. The bimodal viability assessment and ECM analyses approve reliability of ex vivo CAVD investigation and comparability of parallel tissue segments with different treatment strategies regarding the AV (patho)physiology.

11.
Adv Healthc Mater ; 12(28): e2301300, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37498721

RESUMO

Device-associated bloodstream infections can cause serious medical problems and cost-intensive postinfection management, defining a need for more effective antimicrobial coatings. Newly developed coatings often show reduced bacterial colonization and high hemocompatibility in established in vitro tests, but fail in animal studies or clinical trials. The poor predictive power of these models is attributed to inadequate representation of in vivo conditions. Herein, a new single-pass blood flow model, with simultaneous incubation of the test surface with bacteria and freshly-drawn human blood, is presented. The flow model is validated by comparative analysis of a recently developed set of antiadhesive and contact-killing polymer coatings, and the corresponding uncoated polycarbonate surfaces. The results confirm the model's ability to differentiate the antimicrobial activities of the studied surfaces. Blood activation data correlate with bacterial surface coverage: low bacterial adhesion is associated with low inflammation and hemostasis. Shear stress correlates inversely with bacterial colonization, especially on antiadhesive surfaces. The introduced model is concluded to enable the evaluation of novel antimicrobial materials under in vivo-like conditions, capturing interactions between bacteria and biomaterials surfaces in the presence of key components of the ex vivo host response.


Assuntos
Anti-Infecciosos , Animais , Humanos , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis , Aderência Bacteriana , Polímeros , Bactérias , Materiais Revestidos Biocompatíveis/farmacologia , Antibacterianos
12.
Altern Lab Anim ; 40(5): 235-57, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23215661

RESUMO

Various factors, including the phylogenetic distance between laboratory animals and humans, the discrepancy between current in vitro systems and the human body, and the restrictions of in silico modelling, have generated the need for new solutions to the ever-increasing worldwide dilemma of substance testing. This review provides a historical sketch on the accentuation of this dilemma, and highlights fundamental limitations to the countermeasures taken so far. It describes the potential of recently-introduced microsystems to emulate human organs in 'organ-on-a-chip' devices. Finally, it focuses on an in-depth analysis of the first devices that aimed to mimic human systemic organ interactions in 'human-on-a-chip' systems. Their potential to replace acute systemic toxicity testing in animals, and their inability to provide alternatives to repeated dose long-term testing, are discussed. Inspired by the latest discoveries in human biology, tissue engineering and micro-systems technology, this review proposes a paradigm shift to overcome the apparent challenges. A roadmap is outlined to create a new homeostatic level of biology in 'human-on-a-chip' systems in order to, in the long run, replace systemic repeated dose safety evaluation and disease modelling in animals.


Assuntos
Alternativas aos Testes com Animais , Animais de Laboratório , Técnicas Analíticas Microfluídicas/métodos , Testes de Toxicidade/métodos , Animais , Humanos , Pesquisa com Células-Tronco
13.
Biomater Biosyst ; 8: 100067, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36824376

RESUMO

Fiber-shaped materials have great potential for tissue engineering applications as they provide structural support and spatial patterns within a three-dimensional construct. Here we demonstrate the fabrication of mechanically stable, meter-long collagen hollow filaments by a direct extrusion printing process. The fibres are permeable for oxygen and proteins and allow cultivation of primary human endothelial cells (ECs) at the inner surface under perfused conditions. The cells show typical characteristics of a well-organized EC lining including VE-cadherin expression, cellular response to flow and ECM production. The results demonstrate that the collagen tubes are capable of creating robust soft tissue filaments. The mechanical properties and the biofunctionality of these collagen hollow filaments facilitate the engineering of prevascularised tissue engineering constructs.

14.
J Public Health (Oxf) ; 32(3): 387-94, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20208067

RESUMO

BACKGROUND: To determine the accuracy of patient self-reports of specific cardiovascular diagnoses and to identify individual patient characteristics that influence the accuracy. METHODS: This investigation was conducted as a part of the randomized controlled ORBITAL study. Patients with hypercholesterolemia were enrolled in 1961 primary-care centers all over Germany. Self-reported questionnaire data of 7640 patients were compared with patients' case report forms (CRFs) and medical records on cardiovascular diseases, using kappa statistics and binomial logit models. RESULTS: kappa values ranged from 0.89 for diabetes to 0.04 for angina. The percentage of overreporting varied from 1% for diabetes to 17% for angina, whereas the percentage of underreporting varied from 8.0% for myocardial infarction to 57% for heart failure. Individual characteristics such as choice of individual general practitioner, male gender and age were associated with the accuracy of self-report data. CONCLUSION: Since the agreement between patient self-report and CRFs/medical records varies with specific cardiovascular diagnoses in patients with hypercholesterolemia, the adequacy of this tool seems to be limited. However, the authors recommend additional data validation for certain patient groups and consideration of individual patient characteristics associated with over- and underreporting.


Assuntos
Doenças Cardiovasculares/diagnóstico , Nível de Saúde , Hipercolesterolemia , Autorrevelação , Inquéritos e Questionários , Idoso , Feminino , Alemanha , Humanos , Masculino , Prontuários Médicos , Pessoa de Meia-Idade , Médicos de Família , Reprodutibilidade dos Testes
15.
Acta Biomater ; 102: 273-286, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31778832

RESUMO

The lack of a fully developed human cardiac model in vitro hampers the progress of many biomedical research fields including pharmacology, developmental biology, and disease modeling. Currently, available methods may only differentiate human induced pluripotent stem cells (iPSCs) into immature cardiomyocytes. To achieve cardiomyocyte maturation, appropriate modulation of cellular microenvironment is needed. This study aims to optimize a microfluidic system that enhances maturation of human iPSC-derived cardiomyocytes (iPSC-CMs) through cyclic pulsatile hemodynamic forces. Human iPSC-CMs cultured in the microfluidic system show increased alignment and contractility and appear more rod-like shaped with increased cell size and increased sarcomere length when compared to static cultures. Increased complexity and density of the mitochondrial network in iPSC-CMs cultured in the microfluidic system are in line with expression of mitochondrial marker genes MT-CO1 and OPA1. Moreover, the optimized microfluidic system is capable of stably maintaining controlled oxygen levels and inducing hypoxia, revealed by increased expression of HIF1α and EGLN2 as well as changes in contraction parameters in iPSC-CMs. In summary, this microfluidic system boosts the structural maturation of iPSC-CM culture and could serve as an advanced in vitro cardiac model for biomedical research in the future. STATEMENT OF SIGNIFICANCE: The availability of in vitro human cardiomyocytes generated from induced pluripotent stem cells (iPSCs) opens the possibility to develop human in vitro heart models for disease modeling and drug testing. However, iPSC-derived cardiomyocytes remain structurally and functionally immature, which hinders their application. In this manuscript, we present an optimized and complete microfluidic system that enhances maturation of iPSC-derived cardiomyocytes through physiological cyclic pulsatile hemodynamic forces. Furthermore, we improved our microfluidic system by using a closed microfluidic recirculation and oxygen exchangers to achieve and maintain low oxygen in the culture chambers, which is suitable for mimicking the hypoxic condition and studying the pathophysiological mechanisms of human diseases in vitro. In the future, a variety of technologies including 3D tissue engineering could be integrated into our system, which may greatly extend the use of iPSC-derived cardiac models in drug development and disease modeling.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Microfluídica/métodos , Miócitos Cardíacos/fisiologia , Biomimética/instrumentação , Biomimética/métodos , Hipóxia Celular/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Microfluídica/instrumentação , Miócitos Cardíacos/citologia
16.
Eur J Cardiovasc Prev Rehabil ; 16(2): 180-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19174696

RESUMO

AIM: To determine whether a compliance-enhancing program could increase the level of lipid control in patients treated with rosuvastatin. METHODS AND RESULTS: A total of 8108 patients (56% men, mean age 59 years; 44% women, mean age 63 years) with low-density lipoprotein cholesterol (LDL-C) >or=115 mg/dl if statin-naive or else >or=125 mg/dl were randomized to rosuvastatin 10 mg daily either with or without a compliance-enhancing program for 12 months. Patients not achieving the goal after 3 months were uptitrated to rosuvastatin 20 mg daily thereafter. At 3, 6, and 12 months, rosuvastatin plus compliance initiatives were similarly effective to rosuvastatin alone in terms of 1998 European LDL-C goal of less than 115 mg/dl achievement (72 vs. 70%, 71 vs. 69%, 68 vs. 68%) and changes in the lipid profile. Significant differences were observed in the subgroup of statin-naive patients at 3 and 6 months (80 vs. 76% and 78 vs. 73%, P<0.01). The frequency of adverse events and relevant changes in laboratory data were consistent with the known safety profile of rosuvastatin. CONCLUSION: Rosuvastatin 10/20 mg daily enables the majority of patients to achieve LDL-C less than 115 mg/dl within 3 months. The compliance-enhancing program was only effective in statin-naive patients at early time points, but had no overall effect over 12 months.


Assuntos
LDL-Colesterol/sangue , Fluorbenzenos/uso terapêutico , Conhecimentos, Atitudes e Prática em Saúde , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipercolesterolemia/tratamento farmacológico , Adesão à Medicação , Educação de Pacientes como Assunto , Pirimidinas/uso terapêutico , Sulfonamidas/uso terapêutico , Idoso , Biomarcadores/sangue , Europa (Continente) , Feminino , Fluorbenzenos/efeitos adversos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Hipercolesterolemia/sangue , Masculino , Pessoa de Meia-Idade , Avaliação de Programas e Projetos de Saúde , Pirimidinas/efeitos adversos , Rosuvastatina Cálcica , Sulfonamidas/efeitos adversos , Fatores de Tempo , Resultado do Tratamento
17.
Eng Life Sci ; 18(4): 263-268, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32624905

RESUMO

In this work, an approach for SPR spectroscopy using the liSPR system is examined that combines signal amplification by PCR and magnetic nanoparticles in one injection step. Therefore, the synthesis of PCR products was performed on the beads similar to a solid-phase PCR, termed PCR-on-a-bead. The functionality of this PCR was proven using an enzymatic assay. For validation the detection of oligonucleotides by SPR, an asymmetric PCR product was investigated. A signal increase upon binding of the PCR product to the specific probes was observed. In addition, surface regeneration of the chip was examined and reuse for at least two times ascertained. Amplification of the SPR signal by magnetic beads was verified but no signal was detected for PCR products immobilized on particles prior to injection.

18.
Biosensors (Basel) ; 8(3)2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30044392

RESUMO

Optical biosensors based on one-dimensional photonic crystals sustaining Bloch surface waves are proposed to study antibody interactions and perform affinity studies. The presented approach utilizes two types of different antibodies anchored at the sensitive area of a photonic crystal-based biosensor. Such a strategy allows for creating two or more on-chip regions with different biochemical features as well as studying the binding kinetics of biomolecules in real time. In particular, the proposed detection system shows an estimated limit of detection for the target antibody (anti-human IgG) smaller than 0.19 nM (28 ng/mL), corresponding to a minimum surface mass coverage of 10.3 ng/cm². Moreover, from the binding curves we successfully derived the equilibrium association and dissociation constants (KA = 7.5 × 107 M-1; KD = 13.26 nM) of the human IgG⁻anti-human IgG interaction.


Assuntos
Anticorpos/análise , Técnicas Biossensoriais/métodos , Imunoglobulina G/análise , Nanoestruturas/química , Óptica e Fotônica/métodos , Fótons , Anticorpos/imunologia , Técnicas Biossensoriais/instrumentação , Humanos , Imunoglobulina G/imunologia , Óptica e Fotônica/instrumentação
19.
ACS Synth Biol ; 7(1): 86-97, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29216425

RESUMO

The ethylmalonyl-CoA pathway (EMCP) is an anaplerotic reaction sequence in the central carbon metabolism of numerous Proteo- and Actinobacteria. The pathway features several CoA-bound mono- and dicarboxylic acids that are of interest as platform chemicals for the chemical industry. The EMCP, however, is essential for growth on C1 and C2 carbon substrates and therefore cannot be simply interrupted to drain these intermediates. In this study, we aimed at reengineering central carbon metabolism of the Alphaproteobacterium Methylobacterium extorquens AM1 for the specific production of EMCP derivatives in the supernatant. Establishing a heterologous glyoxylate shunt in M. extorquens AM1 restored wild type-like growth in several EMCP knockout strains on defined minimal medium with acetate as carbon source. We further engineered one of these strains that carried a deletion of the gene encoding crotonyl-CoA carboxylase/reductase to demonstrate in a proof-of-concept the specific production of crotonic acid in the supernatant on a defined minimal medium. Our experiments demonstrate that it is in principle possible to further exploit the EMCP by establishing an alternative central carbon metabolic pathway in M. extorquens AM1, opening many possibilities for the biotechnological production of EMCP-derived compounds in future.


Assuntos
Acil Coenzima A/genética , Proteínas de Bactérias/genética , Carbono/metabolismo , Glioxilatos/metabolismo , Engenharia Metabólica , Methylobacterium extorquens/metabolismo , Ácido Acético/metabolismo , Acil Coenzima A/deficiência , Acil-CoA Desidrogenases/deficiência , Acil-CoA Desidrogenases/genética , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/metabolismo , Crotonatos/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Isocitrato Liase/genética , Isocitrato Liase/metabolismo , Malato Sintase/genética , Malato Sintase/metabolismo , Metanol/química , Metanol/metabolismo , Methylobacterium extorquens/genética , Methylobacterium extorquens/crescimento & desenvolvimento , Oxirredução , Espectrofotometria
20.
Biomed Opt Express ; 9(2): 529-542, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29552391

RESUMO

Quantitative detection of angiogenic biomarkers provides a powerful tool to diagnose cancers in early stages and to follow its progression during therapy. Conventional tests require trained personnel, dedicated laboratory equipment and are generally time-consuming. Herein, we propose our developed biosensing platform as a useful tool for a rapid determination of Angiopoietin-2 biomarker directly from patient plasma within 30 minutes, without any sample preparation or dilution. Bloch surface waves supported by one dimensional photonic crystal are exploited to enhance and redirect the fluorescence arising from a sandwich immunoassay that involves Angiopoietin-2. The sensing units consist of disposable and low-cost plastic biochips coated with the photonic crystal. The biosensing platform is demonstrated to detect Angiopoietin-2 in plasma samples at the clinically relevant concentration of 6 ng/mL, with an estimated limit of detection of approximately 1 ng/mL. This is the first Bloch surface wave based assay capable of detecting relevant concentrations of an angiogenic factor in plasma samples. The results obtained by the developed biosensing platform are in close agreement with enzyme-linked immunosorbent assays, demonstrating a good accuracy, and their repeatability showed acceptable relative variations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA