RESUMO
BACKGROUND: NKX3.1, a prostate-specific tumor suppressor, is either genomically lost or its protein levels are severely downregulated, which are invariably associated with poor prognosis in prostate cancer (PCa). Nevertheless, a clear disconnect exists between its mRNA and protein levels, indicating that its post-translational regulation may be critical in maintaining its protein levels. Similarly, AURKA is vastly overexpressed in all stages of prostate cancer (PCa), including castration-resistant PCa (CRPC) and neuroendocrine PCa (NEPC), although its transcripts are only increased in ~ 15% of cases, hinting at additional mechanisms of deregulation. Thus, identifying the upstream regulators that control AURKA and NKX3.1's levels and/or their downstream effectors offer an alternative route to inhibit AURKA and upregulate NKX3.1 in highly fatal CRPC and NEPC. AURKA and NKX3.1 have not linked to each other in any study to date. METHODS: A chemical genetic screen revealed NKX3.1 as a direct target of AURKA. AURKA-NKX3.1 cross-talk was analyzed using several biochemical techniques in CRPC and NEPC cells. RESULTS: We uncovered a reciprocal loop between AURKA and NKX3.1 in CRPC and NEPC cells. We observed that AURKA-mediated NKX3.1 downregulation is a major mechanism that drives CRPC pathogenesis and NEPC differentiation. AURKA phosphorylates NKX3.1 at three sites, which degrades it, but AURKA does not regulate NKX3.1 mRNA levels. NKX3.1 degradation drives highly aggressive oncogenic phenotypes in cells. NKX3.1 also degrades AURKA in a feedback loop. NKX3.1-AURKA loop thus upregulates AKT, ARv7 and Androgen Receptor (AR)-signaling in tandem promoting highly malignant phenotypes. Just as importantly, we observed that NKX3.1 overexpression fully abolished synaptophysin and enolase expression in NEPC cells, uncovering a strong negative relationship between NKX3.1 and neuroendocrine phenotypes, which was further confirmed be measuring neurite outgrowth. While WT-NKX3.1 inhibited neuronal differentiation, 3A-NKX3.1 expression obliterated it. CONCLUSIONS: NKX3.1 loss could be a major mechanism causing AURKA upregulation in CRPC and NEPC and vice versa. NKX3.1 genomic loss requires gene therapy, nonetheless, targeting AURKA provides a powerful tool to maintain NKX3.1 levels. Conversely, when NKX3.1 upregulation strategy using small molecules comes to fruition, AURKA inhibition should work synergistically due to the reciprocal loop in these highly aggressive incurable diseases.
Assuntos
Aurora Quinase A/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Neoplasias da Próstata/genética , Fatores de Transcrição/genética , Aurora Quinase A/metabolismo , Castração , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Fatores de Transcrição/metabolismoRESUMO
Histone modification, a post-translational modification of histones and involving various covalent tags, such as methyl, phosphate and acetate groups, affects gene expression and hence modulates various cellular events, including growth and proliferation. Consequently histone-modifying proteins have become targets for the development of anticancer agents. Thus far, compounds that inhibit the methylation or acetylation of histones have advanced in the clinic, but inhibitors of histone phosphorylation have lagged behind. Haspin is a kinase that phosphorylates histone H3 and is a promising anticancer target. Thus far only a handful of haspin inhibitors have been reported. Using a one-flask Doebner/Povarov reaction, we synthesized a library of compounds that potently inhibit haspin with IC50 values as low as 14â¯nM. Some of these compounds also inhibited the proliferation of cancer cell lines HCT116, HeLa and A375. The ease of synthesis of the new haspin inhibitors, coupled with their anticancer activities make these compounds interesting leads to develop into therapeutics.
Assuntos
Antineoplásicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Relação Estrutura-Atividade , Células Tumorais CultivadasRESUMO
Despite being the leading cause of cancer-related childhood mortality, pediatric gliomas have been relatively understudied, and the repurposing of immunotherapies has not been successful. Whole-transcriptome sequencing, single-cell sequencing, and sequential multiplex immunofluorescence were used to identify an immunotherapeutic strategy that could be applied to multiple preclinical glioma models. MAPK-driven pediatric gliomas have a higher IFN signature relative to other molecular subgroups. Single-cell sequencing identified an activated and cytotoxic microglia (MG) population designated MG-Act in BRAF-fused, MAPK-activated pilocytic astrocytoma (PA), but not in high-grade gliomas or normal brain. T cell immunoglobulin and mucin domain 3 (TIM3) was expressed on MG-Act and on the myeloid cells lining the tumor vasculature but not normal brain vasculature. TIM3 expression became upregulated on immune cells in the PA microenvironment, and anti-TIM3 reprogrammed ex vivo immune cells from human PAs to a proinflammatory cytotoxic phenotype. In a genetically engineered murine model of MAPK-driven, low-grade gliomas, anti-TIM3 treatment increased median survival over IgG- and anti-PD-1-treated mice. Single-cell RNA-Seq data during the therapeutic window of anti-TIM3 revealed enrichment of the MG-Act population. The therapeutic activity of anti-TIM3 was abrogated in mice on the CX3CR1 MG-KO background. These data support the use of anti-TIM3 in clinical trials of pediatric low-grade, MAPK-driven gliomas.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Receptor Celular 2 do Vírus da Hepatite A , Proteínas Proto-Oncogênicas B-raf , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/imunologia , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas B-raf/genética , Astrocitoma/genética , Astrocitoma/imunologia , Astrocitoma/patologia , Astrocitoma/terapia , Astrocitoma/metabolismo , Criança , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Feminino , Microambiente Tumoral/imunologia , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Glioma/imunologia , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Glioma/terapiaRESUMO
STING agonists can reprogram the tumor microenvironment to induce immunological clearance within the central nervous system. Using multiplexed sequential immunofluorescence (SeqIF) and the Ivy Glioblastoma Atlas, STING expression was found in myeloid populations and in the perivascular space. The STING agonist 8803 increased median survival in multiple preclinical models of glioblastoma, including QPP8, an immune checkpoint blockade-resistant model, where 100% of mice were cured. Ex vivo flow cytometry profiling during the therapeutic window demonstrated increases in myeloid tumor trafficking and activation, alongside enhancement of CD8+ T cell and NK effector responses. Treatment with 8803 reprogrammed microglia to express costimulatory CD80/CD86 and iNOS, while decreasing immunosuppressive CD206 and arginase. In humanized mice, where tumor cell STING is epigenetically silenced, 8803 therapeutic activity was maintained, further attesting to myeloid dependency and reprogramming. Although the combination with a STAT3 inhibitor did not further enhance STING agonist activity, the addition of anti-PD-1 antibodies to 8803 treatment enhanced survival in an immune checkpoint blockade-responsive glioma model. In summary, 8803 as a monotherapy demonstrates marked in vivo therapeutic activity, meriting consideration for clinical translation.
Assuntos
Glioblastoma , Proteínas de Membrana , Microambiente Tumoral , Animais , Glioblastoma/imunologia , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Microambiente Tumoral/imunologia , Camundongos , Proteínas de Membrana/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/agonistas , Humanos , Linhagem Celular Tumoral , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genéticaRESUMO
Cytokines play an important role in regulating the immune response. Although there is great interest in exploiting cytokines for cancer immunotherapy, their clinical potential is limited by their pleiotropic properties and instability. A variety of cancer cell-intrinsic and extrinsic characteristics pose a barrier to effective treatments including cytokines. Recent studies using gene and cell therapy offer new opportunities for targeting cytokines or their receptors, demonstrating that they are actionable targets. Current efforts such as virotherapy, systemic cytokine therapy, and cellular and gene therapy have provided novel strategies that incorporate cytokines as potential therapeutic strategies for glioblastoma. Ongoing research on characterizing the tumor microenvironment will be informative for prioritization and combinatorial strategies of cytokines for future clinical trials. Unique therapeutic opportunities exist at the convergence of cytokines that play a dual role in tumorigenesis and immune modulation. Here, we discuss the underlying strategies in pre- and clinical trials aiming to enhance treatment outcomes in glioblastoma patients.
RESUMO
BACKGROUND: Chimeric antigen receptor (CAR) T cells have recently been demonstrated to extract and express cognate tumor antigens through trogocytosis. This process may contribute to tumor antigen escape, T cell exhaustion, and fratricide, which plays a central role in CAR dysfunction. We sought to evaluate the importance of this effect in epidermal growth factor receptor variant III (EGFRvIII) specific CAR T cells targeting glioma. METHODS: EGFRvIII-specific CAR T cells were generated from various donors and analyzed for cytotoxicity, trogocytosis, and in vivo therapeutic activity against intracranial glioma. Tumor autophagy resulting from CAR T cell activity was evaluated in combination with an autophagy inducer (verteporfin) or inhibitor (bafilomycin A1). RESULTS: CAR T cell products derived from different donors induced markedly divergent levels of trogocytosis of tumor antigen as well as PD-L1 upon engaging target tumor cells correlating with variability in efficacy in mice. Pharmacological facilitation of CAR induced-autophagy with verteporfin inhibits trogocytic expression of tumor antigen on CARs and increases CAR persistence and efficacy in mice. CONCLUSION: These data propose CAR-induced autophagy as a mechanism counteracting CAR-induced trogocytosis and provide a new strategy to innovate high-performance CARs through pharmacological facilitation of T cell-induced tumor death.
RESUMO
NKX3.1's downregulation is strongly associated with prostate cancer (PCa) initiation, progression, and CRPC development. Nevertheless, a clear disagreement exists between NKX3.1 protein and mRNA levels in PCa tissues, indicating that its regulation at a post-translational level plays a vital role. This study identified a strong negative relationship between NKX3.1 and LIMK2, which is critical in CRPC pathogenesis. We identified that NKX3.1 degradation by direct phosphorylation by LIMK2 is crucial for promoting oncogenicity in CRPC cells and in vivo. LIMK2 also downregulates NKX3.1 mRNA levels. In return, NKX3.1 promotes LIMK2's ubiquitylation. Thus, the negative crosstalk between LIMK2-NKX3.1 regulates AR, ARv7, and AKT signaling, promoting aggressive phenotypes. We also provide a new link between NKX3.1 and PTEN, both of which are downregulated by LIMK2. PTEN loss is strongly linked with NKX3.1 downregulation. As NKX3.1 is a prostate-specific tumor suppressor, preserving its levels by LIMK2 inhibition provides a tremendous opportunity for developing targeted therapy in CRPC. Further, as NKX3.1 downregulates AR transcription and inhibits AKT signaling, restoring its levels by inhibiting LIMK2 is expected to be especially beneficial by co-targeting two driver pathways in tandem, a highly desirable requisite for developing effective PCa therapeutics.
RESUMO
PURPOSE: Cyclic guanosine monophosphate-adenosine monophosphate and other bacterial-derived cyclic di-guanosine monophosphate or cyclic di-adenosine monophosphate trigger innate immune responses through binding to stimulator of interferon genes (STING). Thus in chronic infection, such as in periodontitis, immune cells can be exposed to bacterial DNA and/or cyclic dinucleotides, potentially activating STING to cause inflammation. Thus far the cyclic GMP-AMP synthase-STING- TANK-binding kinase 1 pathway has been well characterized but a global perspective of how the presence or lack of STING affect the proteome is lacking. The aim of this study is to identify macrophage proteins that are affected by STING. EXPERIMENTAL DESIGN: Proteins are extracted from a macrophage cell line harboring STING (RAW-Blue ISG) as well as a STING knockout (STING KO) cell line (RAW-Lucia ISG-KO-STING) and global proteomics analyses are performed. RESULTS: Proteins related to kinase and phosphatase signaling, spliceosome, terpenoid backbone biosynthesis, glycosylation, ubiquitination, and phagocytosis are affected by STING knock out. CONCLUSIONS AND CLINICAL RELEVANCE: STING pathway in macrophages is related to the regulation of several proteins that are known as potent biomarkers of various cancers and autoimmune diseases. Moreover, the relation between STING and phagocytosis is demonstrated for the first time. Further validation studies will help identify molecules and pathways that may function as diagnostic or therapeutic targets.
Assuntos
Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Proteômica , Animais , Biomarcadores/metabolismo , Linhagem Celular , Técnicas de Inativação de Genes , Glicosilação , Macrófagos/citologia , Macrófagos/imunologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Terapia de Alvo Molecular , Fagocitose , Transdução de Sinais , UbiquitinaçãoRESUMO
The cyclic dinucleotide-cGAS-STING axis plays important roles in host immunity. Activation of this signaling pathway, via cytosolic sensing of bacterial-derived c-di-GMP/c-di-AMP or host-derived cGAMP, leads to the production of inflammatory interferons and cytokines that help resolve infection. Small molecule activators of the cGAS-STING axis have the potential to augment immune response against various pathogens or cancer. The aberrant activation of this pathway, due to gain-of-function mutations in any of the proteins that are part of the signaling axis, could lead to various autoimmune diseases. Inhibiting various nodes of the cGAS-STING axis could provide relief to patients with autoimmune diseases. Many excellent reviews on the cGAS-STING axis have been published recently, and these have mainly focused on the molecular details of the cGAS-STING pathway. This review however focuses on small molecules that can be used to modulate various aspects of the cGAS-STING pathway, as well as other parallel inflammatory pathways.
RESUMO
AIM: Persistent activation of STING pathway is the basis for several autoimmune diseases. STING is activated by cGAMP, which is produced by cGAS in the presence of DNA. Results/methodology: HPLC-based medium throughput screening for inhibitors of cGAS identified suramin as a potent inhibitor. Unlike other reported cGAS inhibitors, which bind to the ATP/GTP binding site, suramin displaced the bound DNA from cGAS. Addition of suramin to THP1 cells reduced the levels of IFN-ß mRNA and protein. Suramin did not inhibit lipopolysaccharide- or Pam3CSK4-induced IL-6 mRNA expression. CONCLUSION: Suramin inhibits STING pathway via the inhibition of cGAS enzymatic activity. Suramin or analogs thereof that displace DNA from cGAS could be used as anti-inflammatory drugs.
Assuntos
Anti-Inflamatórios/farmacologia , Inibidores Enzimáticos/farmacologia , Interferon beta/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Suramina/farmacologia , Doenças Autoimunes/tratamento farmacológico , Regulação da Expressão Gênica , Humanos , Interferon beta/genética , Proteínas de Membrana/efeitos dos fármacos , Estrutura Molecular , RNA Mensageiro/efeitos dos fármacos , Relação Estrutura-Atividade , Células THP-1RESUMO
Global and quantitative analysis of the proteome help to reveal how host cells sense invading bacteria and respond to bacterial signaling molecules. Here, we performed label free quantitative proteomic analysis of RAW macrophages treated with host-derived cGAMP and bacterial-derived c-di-GMP, in an attempt to identify cellular pathways impacted by these dinucleotides and determine if the host responds differentially to these two cyclic dinucleotides. We identified a total of 3811 proteins of which abundances of 404 proteins in cGAMP and 236 proteins in c-di-GMP treated cells were significantly different compared to the control. Many of the proteins that were strongly and commonly upregulated, such as interferon-induced proteins 47, 202 and 204 (Ifi47, Ifi202, Ifi204), ubiquitin-activating enzyme E7 (Uba7), interferon-induced protein with tetratricopeptide repeats 1, 2 or 3 (Ifit1, Ifit2, Ifit3), ubiquitin-like protein ISG15 (ISG15), might be due to the fact that both dinucleotides promote the production of interferons, which induce the expression of many proteins. However, there were also other proteins that were differentially affected by cGAMP or c-di-GMP treatment, including probable ATP-dependent RNA helicase DHX58 (Dhx58), nuclear autoantigen Sp-100 (Sp100), MARCKS-related protein (Marcksl1) and antigen peptide transporter 2 (Tap2). This is probably due to the differential levels of IFNs produced by the dinucleotides or may indicate that non-STING activation might also contribute to the host's response to c-di-GMP and cGAMP. Interestingly Trex1, a nuclease that degrades DNA (an activator of cGAS to produce cGAMP), was upregulated (3.22 fold) upon cGAMP treatment, hinting at a possible feedback loop to regulate cGAMP synthesis. These results lay a foundation for future studies to better characterize and understand the complex c-di-GMP and cGAMP signaling network.
RESUMO
AIM: Approximately 30% of acute myeloid leukemia (AML) patients carry FLT3 tyrosine kinase domain (TKD) mutations or internal tandem duplication (FLT3-ITD). Currently there is a paucity of compounds that are active against drug-resistant FLT3-ITD, which contains secondary mutations in the TKD, mainly at residues D835/F691. RESULTS: HSD1169, a novel compound, is active against FLT3-ITD (D835 or F691). HSD1169 is also active against T-LAK cell-originated protein kinase (TOPK), a collaborating kinase that is highly expressed in AML cell lines. HSD1169 was active against MV4-11 and Molm-14 (FLT3-ITD cell lines) but not NOMO-1 or HL60 (FLT3-WT cell lines). HSD1169 was also active against sorafenib-resistant Molm13-res cell line (containing FLT3-ITD/D835Y). CONCLUSION: HSD1169 or an analog could become a therapeutic agent for AML containing drug-resistant FLT3-ITD.
Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Mutação , Inibidores de Proteínas Quinases/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Fase G1/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/patologia , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
Gram-negative bacteria contain a double membrane which serves for both protection and for providing nutrients for viability. The outermost of these membranes is called the outer membrane (OM), and it contains a host of fully integrated membrane proteins which serve essential functions for the cell, including nutrient uptake, cell adhesion, cell signalling and waste export. For pathogenic strains, many of these outer membrane proteins (OMPs) also serve as virulence factors for nutrient scavenging and evasion of host defence mechanisms. OMPs are unique membrane proteins in that they have a ß-barrel fold and can range in size from 8 to 26 strands, yet can still serve many different functions for the cell. Despite their essential roles in cell survival and virulence, the exact mechanism for the biogenesis of these OMPs into the OM has remained largely unknown. However, the past decade has witnessed significant progress towards unravelling the pathways and mechanisms necessary for moulding a nascent polypeptide into a functional OMP within the OM. Here, we will review some of these recent discoveries that have advanced our understanding of the biogenesis of OMPs in Gram-negative bacteria, starting with synthesis in the cytoplasm to folding and insertion into the OM.