Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 153(1): 99-113, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20200070

RESUMO

In higher plants, three subfamilies of sucrose nonfermenting-1 (Snf1)-related protein kinases have evolved. While the Snf1-related protein kinase 1 (SnRK1) subfamily has been shown to share pivotal roles with the orthologous yeast Snf1 and mammalian AMP-activated protein kinase in modulating energy and metabolic homeostasis, the functional significance of the two plant-specific subfamilies SnRK2 and SnRK3 in these critical processes is poorly understood. We show here that SnRK2.6, previously identified as crucial in the control of stomatal aperture by abscisic acid (ABA), has a broad expression pattern and participates in the regulation of plant primary metabolism. Inactivation of this gene reduced oil synthesis in Arabidopsis (Arabidopsis thaliana) seeds, whereas its overexpression increased Suc synthesis and fatty acid desaturation in the leaves. Notably, the metabolic alterations in the SnRK2.6 overexpressors were accompanied by amelioration of those physiological processes that require high levels of carbon and energy input, such as plant growth and seed production. However, the mechanisms underlying these functionalities could not be solely attributed to the role of SnRK2.6 as a positive regulator of ABA signaling, although we demonstrate that this kinase confers ABA hypersensitivity during seedling growth. Collectively, our results suggest that SnRK2.6 mediates hormonal and metabolic regulation of plant growth and development and that, besides the SnRK1 kinases, SnRK2.6 is also implicated in the regulation of metabolic homeostasis in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Óleos de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sementes/metabolismo , Sacarose/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Metabolismo Energético , Ácidos Graxos Dessaturases/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação , Vírus do Mosaico , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento
2.
Toxins (Basel) ; 11(5)2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100873

RESUMO

Vip3A proteins are important for the control of spodopteran pests in crops, including Spodoptera frugiperda (fall armyworm). Native Vip3Ab1 controls S. frugiperda, but it is ineffective against S. eridania (southern armyworm), a major pest of soybean in South America. Recently, a Vip3Ab1 chimera with a modified C-terminus was described, Vip3Ab1-740, which has increased potency against S. eridania while maintaining activity against S. frugiperda. As S. frugiperda and S. eridania are differentially susceptible to Vip3Ab1, experiments were conducted to identify and understand the mechanism by which this expanded potency is conferred. The role of protein stability, processing, and in vivo effects of Vip3Ab1 and Vip3Ab1-740 in both of these species was investigated. Biochemical characterization of the midgut fluids of these two species indicated no obvious differences in the composition and activity of digestive enzymes, which protease inhibitor studies indicated were likely serine proteases. Histological examination demonstrated that both proteins cause midgut disruption in S. frugiperda, while only Vip3Ab1-740 affects S. eridania. Immunolocalization indicated that both proteins were present in the midgut of S. frugiperda, but only Vip3Ab1-740 was detected in the midgut of S. eridania. We conclude that the gain of toxicity of Vip3Ab1-740 to S. eridania is due to an increase in protein stability in the midgut, which was conferred by C-terminal modification.


Assuntos
Proteínas de Bactérias/toxicidade , Inseticidas/toxicidade , Controle Biológico de Vetores , Spodoptera/efeitos dos fármacos , Animais , Proteínas de Bactérias/química , Benzamidinas/química , Trato Gastrointestinal/química , Trato Gastrointestinal/efeitos dos fármacos , Larva/efeitos dos fármacos , Inibidores de Proteases/química , Estabilidade Proteica
3.
Toxins (Basel) ; 11(6)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163681

RESUMO

Vegetative insecticidal proteins (Vips) from Bacillus thuringiensis (Bt) are unique from crystal (Cry) proteins found in Bt parasporal inclusions as they are secreted during the bacterial vegetative growth phase and bind unique receptors to exert their insecticidal effects. We previously demonstrated that large modifications of the Vip3 C-terminus could redirect insecticidal spectrum but results in an unstable protein with no lethal activity. In the present work, we have generated a new Vip3 protein, Vip3Ab1-740, via modest modification of the Vip3Ab1 C-terminus. Vip3Ab1-740 is readily processed by midgut fluid enzymes and has lethal activity towards Spodoptera eridania, which is not observed with the Vip3Ab1 parent protein. Importantly, Vip3Ab1-740 does retain the lethal activity of Vip3Ab1 against other important lepidopteran pests. Furthermore, transgenic plants expressing Vip3Ab1-740 are protected against S. eridania, Spodoptera frugiperda, Helicoverpa zea, and Pseudoplusia includens. Thus, these studies demonstrate successful engineering of Vip3 proteins at the C-terminus to broaden insecticidal spectrum, which can be employed for functional expression in planta.


Assuntos
Arabidopsis/parasitologia , Proteínas de Bactérias/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/parasitologia , Spodoptera/fisiologia , Animais , Arabidopsis/genética , Inseticidas
4.
Sci Rep ; 7(1): 11112, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894249

RESUMO

In this work, we characterized 2 novel insecticidal proteins; Vip3Ab1 and Vip3Bc1. These proteins display unique insecticidal spectra and have differential rates of processing by lepidopteran digestive enzymes. Furthermore, we have found that both proteins exist as tetramers in their native state before and after proteolysis. In addition, we expressed truncated forms and protein chimeras to gain a deeper understanding of toxin specificity and stability. Our study confirms a role for the C-terminal 65 kDa domain in directing insect specificity. Importantly, these data also indicate a specific interaction between the 20 kDa amino terminus and 65 kDa carboxy terminus, after proteolytic processing. We demonstrate the C-terminal 65 kDa to be labile in native proteolytic conditions in absence of the 20 kDa N-terminus. Thus, the 20 kDa fragment functions to provide stability to the C-terminal domain, which is necessary for lethal toxicity against lepidopteran insects.


Assuntos
Proteínas de Bactérias/genética , Lepidópteros/genética , Proteínas Recombinantes , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Cromatografia em Gel , Lepidópteros/efeitos dos fármacos , Lepidópteros/metabolismo , Domínios Proteicos , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA