RESUMO
BACKGROUND: Afforestation of non-forestland is a new measure by the European Union to enhance climate mitigation and biodiversity. Hybrid aspen (Populus tremula L. × P. tremuloides Michx.) is among the suitable tree species for afforestation to produce woody biomass. However, the best performing genotypic material for intensive biomass production and its physiological adaptation capacity is still unclear. We compared 22 hybrid aspen genotypes growth and leaf physiological characteristics (stomatal conductance, net photosynthesis, intrinsic water-use efficiency) according to their geographical north- or southward transfer (European P. tremula parent from 51° to 60° N and North American P. tremuloides parent from 45° to 54° N) to hemiboreal Estonia (58° N) in a completely randomized design progeny trial. We tested whether the growth ranking of genotypes of different geographical origin has changed from young (3-year-old) to mid-rotation age (13-year-old). The gas exchange parameters were measured in excised shoots in 2021 summer, which was characterised with warmer (+ 4 °C) and drier (17% precipitation from normal) June and July than the long-term average. RESULTS: We found that the northward transfer of hybrid aspen genotypes resulted in a significant gain in growth (two-fold greater diameter at breast height) in comparison with the southward transfer. The early selection of genotypes was generally in good accordance with the middle-aged genotype ranking, while some of the northward transferred genotypes showed improved growth at the middle-age period in comparison with their ranking during the early phase. The genotypes of southward transfer demonstrated higher stomatal conductance, which resulted in higher net photosynthesis, and lower intrinsic water-use efficiency (iWUE) compared with northward transfer genotypes. However, higher photosynthesis did not translate into higher growth rate. The higher physiological activity of southern transferred genotypes was likely related to a better water supply of smaller and consequently more shaded trees under drought. Leaf nitrogen concentration did not have any significant relation with tree growth. CONCLUSIONS: We conclude that the final selection of hybrid aspen genotypes for commercial use should be done in 10-15 years after planting. Physiological traits acquired during periods of droughty conditions may not fully capture the growth potential. Nonetheless, we advocate for a broader integration of physiological measurements alongside traditional traits (such as height and diameter) in genotype field testing to facilitate the selection of climate-adapted planting material for resilient forests.
Assuntos
Genótipo , Folhas de Planta , Populus , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/fisiologia , Populus/genética , Populus/crescimento & desenvolvimento , Populus/fisiologia , Fotossíntese/genética , Hibridização Genética , Ligação GenéticaRESUMO
Fast-growing Populus spp. are well-acknowledged to restore contaminated soils from heavy metals in industrial areas. Thus far, there is no knowledge about the phytoremediation capacity of Populus spp. plantations in hemiboreal Estonia conditions to restore industrially polluted areas. The objective of this study was to assess the soil contamination rate of heavy metals (As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn) and their uptake by mature hybrid aspen (Populus tremula × Populus tremuloides Michx.) in plantations in different industrial pollution areas (e.g. cement factory, oil shale mining). For the reference, industrially polluted plantations were compared with the low pollution area hybrid aspen plantation on former agricultural soil, which was influenced by fertilization and liming before afforestation. Twenty-one years after afforestation, soil samples were collected from the 0-10 cm topsoil layer. Aboveground biomass sampling was performed for bark and stem wood by ingrowth cores to separate wood formed during early (1-10 years) and late (11-21 years) stand development. Two decades after the afforestation of industrially polluted areas, the heavy metal concentrations in the soil were higher than the reference plantation and the standard reference for unpolluted soils in most cases. The highest concentrations of heavy metals in woody biomass were in the oil shale quarry spoil; because of poor growth, the accumulated pools in aboveground biomass were low. Cd differed from other metals and accumulated less in wood and more in bark. The concentration of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni and Zn) was higher in the first decade of stand formation (1-10 years) than in the last 10 years (11-21 years). High pools of heavy metals were accumulated in aboveground biomass in the reference plantation, indicating the considerable removal of heavy metal residues from the previous fertilization and liming source with harvest. Two decades of afforestation with hybrid aspen is too short for complete ecosystem restoration from heavy metals in industrially polluted areas.