Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Langmuir ; 26(4): 2618-23, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-19791748

RESUMO

DNA processing by site-specific proteins on surface remains a challenging issue for nanobioscience applications and, in particular, for high-resolution imaging by atomic force microscopy (AFM). To obtain high-resolution conditions, mica, an atomically flat and negatively charged surface, is generally used. However, even though many specific DNA/protein interactions have already been observed by AFM, little is known about DNA accessibility to specific enzymes on mica. Here we measured the accessibility of adsorbed DNA to restriction endonucleases (EcoRI and EcoRV) using AFM. By increasing the concentration of divalent or multivalent salts, DNA adsorption on mica switches from weak to strong binding. Interestingly, while the accessibility of strongly bound DNA was inhibited, loosely adsorbed DNA was efficiently cleaved on mica. This result opens new perspective to study DNA/protein interaction by AFM or to modify specifically DNA on surface.


Assuntos
DNA/química , Desoxirribonuclease EcoRI/química , Desoxirribonucleases de Sítio Específico do Tipo II/química , Adsorção , Silicatos de Alumínio/química , Desoxirribonuclease EcoRI/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Escherichia coli/enzimologia , Microscopia de Força Atômica , Propriedades de Superfície
2.
J Mol Biol ; 358(2): 455-71, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16529771

RESUMO

We have recently applied in vitro evolution methods to create in Neocarzinostatin a new binding site for a target molecule unrelated to its natural ligand. The main objective of this work was to solve the structure of some of the selected binders in complex with the target molecule: testosterone. Three proteins (1a.15, 3.24 and 4.1) were chosen as representative members of sequence families that came out of the selection process within different randomization schemes. In order to evaluate ligand-induced conformational adaptation, we also determined the structure of one of the proteins (3.24) in the free and complexed forms. Surprisingly, all these mutants bind not one but two molecules of testosterone in two very different ways. The 3.24 structure revealed that the protein spontaneously evolved in the system to bind two ligand molecules in one single binding crevice. These two binding sites are formed by substituted as well as by non-variable side-chains. The comparison with the free structure shows that only limited structural changes are observed upon ligand binding. The X-ray structures of the complex formed by 1a.15 and 4.1 Neocarzinostatin mutants revealed that the two variants form very similar dimers. These dimers were observed neither for the uncomplexed variants nor for wild-type Neocarzinostatin but were shown here to be induced by ligand binding. Comparison of the three complexed forms clearly suggests that these unanticipated structural responses resulted from the molecular arrangement used for the selection experiments.


Assuntos
Evolução Molecular , Testosterona/metabolismo , Zinostatina/química , Zinostatina/metabolismo , Sítios de Ligação/genética , Cristalografia por Raios X , Técnicas In Vitro , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica
3.
Biomacromolecules ; 8(12): 3712-7, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18020393

RESUMO

Studying the influence of macromolecular crowding at high ionic strengths on assemblies of biomolecules is of particular interest because these are standard intracellular conditions. However, up to now, no techniques offer the possibility of studying the effect of molecular crowding at the single molecule scale and at high resolution. We present a method to observe double-strand DNA under macromolecular crowding conditions on a flat mica surface by atomic force microscope. By using high concentrations of monovalent salt ([NaCl] > 100 mM), we promote DNA adsorption onto NiCl 2 pretreated muscovite mica. It therefore allows analysis of DNA conformational changes and DNA compaction induced by polyethylene glycol (PEG), a neutral crowding agent, at physiological concentrations of monovalent salt.


Assuntos
DNA/química , DNA/ultraestrutura , Substâncias Macromoleculares/química , Microscopia de Força Atômica/métodos , Adsorção , Silicatos de Alumínio/química , Conformação Proteica , Propriedades de Superfície
4.
Protein Sci ; 14(1): 209-15, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15608122

RESUMO

We determined the three-dimensional crystal structure of the protein YML079wp, encoded by a hypothetical open reading frame from Saccharomyces cerevisiae to a resolution of 1.75 A. The protein has no close homologs and its molecular and cellular functions are unknown. The structure of the protein is a jelly-roll fold consisting of ten beta-strands organized in two parallel packed beta-sheets. The protein has strong structural resemblance to the plant storage and ligand binding proteins (canavalin, glycinin, auxin binding protein) but also to some plant and bacterial enzymes (epimerase, germin). The protein forms homodimers in the crystal, confirming measurements of its molecular mass in solution. Two monomers have their beta-sheet packed together to form the dimer. The presence of a hydrophobic ligand in a well conserved pocket inside the barrel and local sequence similarity with bacterial epimerases may suggest a biochemical function for this protein.


Assuntos
Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
5.
Proteins ; 60(4): 778-86, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16021630

RESUMO

In the Pseudomonas bacterial genomes, the PhzF proteins are involved in the production of phenazine derivative antibiotic and antifungal compounds. The PhzF superfamily however also encompasses proteins in all genomes from bacteria to eukaryotes, for which no function has been assigned. We have determined the three dimensional crystal structure at 2.05 A resolution of YHI9, the yeast member of the PhzF family. YHI9 has a fold similar to bacterial diaminopimelate epimerase, revealing a bimodular structure with an internal symmetry. Residue conservation identifies a putative active site at the interface between the two domains. Evolution of this protein by gene duplication, gene fusion and domain swapping from an ancestral gene containing the "hot dog" fold, identifies the protein as a "kinked double hot dog" fold.


Assuntos
Isomerases de Aminoácido/química , Proteínas de Saccharomyces cerevisiae/química , Isomerases de Aminoácido/genética , Isomerases de Aminoácido/isolamento & purificação , Cristalografia por Raios X , Modelos Moleculares , Reação em Cadeia da Polimerase , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
6.
Proteins ; 54(4): 776-83, 2004 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-14997573

RESUMO

The protein product of the YGR205w gene of Saccharomyces cerevisiae was targeted as part of our yeast structural genomics project. YGR205w codes for a small (290 amino acids) protein with unknown structure and function. The only recognizable sequence feature is the presence of a Walker A motif (P loop) indicating a possible nucleotide binding/converting function. We determined the three-dimensional crystal structure of Se-methionine substituted protein using multiple anomalous diffraction. The structure revealed a well known mononucleotide fold and strong resemblance to the structure of small metabolite phosphorylating enzymes such as pantothenate and phosphoribulo kinase. Biochemical experiments show that YGR205w binds specifically ATP and, less tightly, ADP. The structure also revealed the presence of two bound sulphate ions, occupying opposite niches in a canyon that corresponds to the active site of the protein. One sulphate is bound to the P-loop in a position that corresponds to the position of beta-phosphate in mononucleotide protein ATP complex, suggesting the protein is indeed a kinase. The nature of the phosphate accepting substrate remains to be determined.


Assuntos
Escherichia coli/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Dados de Sequência Molecular , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Sulfatos/metabolismo
7.
Biochemistry ; 45(49): 14675-82, 2006 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-17144660

RESUMO

Atomic force microscopy (AFM) is a technique widely used to image protein-DNA complexes, and its application has now been extended to the measurements of protein-DNA binding constants and specificities. However, the spreading of the protein-DNA complexes on a flat substrate, generally mica, is required prior to AFM imaging. The influence of the surface on protein-DNA interactions is therefore an issue which needs to be addressed. For that purpose, the extensively studied EcoRI-DNA complex was investigated with the aim of providing quantitative information about the surface influence. The equilibrium binding constant of the complex was determined by AFM at both low and high ionic strengths and compared to electrophoretic mobility shift assay measurements (EMSA). In addition, the effect of the DNA length on dissociation of the protein from its specific site was analyzed. It turned out that the AFM measurements are similar to those obtained by EMSA at high ionic strengths. We then advance the idea that this effect is due to the high counterion concentration near the highly negatively charged mica surface. In addition, a dissociation of the complexes once they are adsorbed onto the surface was observed, which is weakly dependent on the ionic strength contrary to what occurs in solution. Finally, a two-step mechanism, which describes the adsorption of the EcoRI-DNA complexes on the surface, is proposed. This model could also be extended to other protein-DNA complexes.


Assuntos
DNA Bacteriano/metabolismo , Desoxirribonuclease EcoRI/química , Desoxirribonuclease EcoRI/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)/química , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Primers do DNA , DNA Bacteriano/química , Desoxirribonuclease EcoRI/genética , Cinética , Microscopia de Força Atômica , Reação em Cadeia da Polimerase , Conformação Proteica , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , Termodinâmica
8.
Eur Biophys J ; 35(3): 214-23, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16247626

RESUMO

Polyamines are known to induce dynamical bending of DNA molecules. This mechanism is very important since many DNA binding proteins (DNAse, transcription factor, etc.) exert their action by their ability to bend DNA. We propose an analytical model which describes the dynamical bending of DNA by polyamine ions in highly diluted DNA solutions. The bending probability depends on the entropy loss of polyamines due to their localization. This localization is facilitated by the electrostatic repulsion between multivalent counterions condensed on DNA, which reduces the entropy loss in counterion localization. Therefore DNA bending by polyamines depends on the competition between monovalent counterions and polyamines. We find that the bending probability is weak for a low binding ratio of polyamines (i.e. number of bound polyamines per base pair), whereas a high bending probability can be reached at large polyamine binding ratio. In addition, we describe a new mechanism of DNA bending. It occurs with the help of thermal agitation, which initiates the bending and favours the polyamine localization. This model provides further insights into DNA bending by polyamines and its implication in DNA condensation. A qualitative estimation of the DNA bending probability is obtained by measuring the cleavage efficiency of DNA by bleomycin versus spermidine concentration. Indeed, a local helix distortion by polyamines results in an amplification of the double-strand cleavage by bleomycin. The measurement of the bleomycin amplification is performed by analysing images of DNA molecules with atomic force microscope. Some features of the dynamical bending indicate that condensation and bending are interrelated.


Assuntos
DNA/química , Modelos Químicos , Modelos Moleculares , Conformação de Ácido Nucleico/efeitos dos fármacos , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Poliaminas/química , Sítios de Ligação , Bleomicina/química , DNA/efeitos dos fármacos , DNA Viral , Eletroquímica , Entropia , Microscopia de Força Atômica/métodos , Soluções , Espermidina/química
9.
Langmuir ; 22(15): 6651-60, 2006 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-16831009

RESUMO

Adsorption of DNA molecules on mica, a highly negatively charged surface, mediated by divalent or trivalent cations is considered. By analyzing atomic force microscope (AFM) images of DNA molecules adsorbed on mica, phase diagrams of DNA molecules interacting with a mica surface are established in terms of concentrations of monovalent salt (NaCl) and divalent (MgCl2) or multivalent (spermidine, cobalt hexamine) salts. These diagrams show two transitions between nonadsorption and adsorption. The first one arises when the concentration of multivalent counterions is larger than a limit value, which is not sensitive to the monovalent salt concentration. The second transition is due to the binding competition between monovalent and multivalent counterions. In addition, we develop a model of polyelectrolyte adsorption on like-charged surfaces with multivalent counterions. This model shows that the correlations of the multivalent counterions at the interface between DNA and mica play a critical role. Furthermore, it appears that DNA adsorption takes place when the energy gain in counterion correlations overcomes an energy barrier. This barrier is induced by the entropy loss in confining DNA in a thin adsorbed layer, the entropy loss in the interpenetration of the clouds of mica and DNA counterions, and the electrostatic repulsion between DNA and mica. The analysis of the experimental results provides an estimation of this energy barrier. We then discuss some important issues, including DNA adsorption under physiological conditions.


Assuntos
Silicatos de Alumínio/química , DNA/química , Eletrólitos/química , Polímeros/química , Adsorção , Ânions/química , Cátions/química , Microscopia de Força Atômica/métodos , Concentração Osmolar , Tamanho da Partícula , Sensibilidade e Especificidade , Cloreto de Sódio/química , Soluções/química , Propriedades de Superfície
10.
Acta Crystallogr D Biol Crystallogr ; 61(Pt 6): 664-70, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15930617

RESUMO

Crystallization has long been regarded as one of the major bottlenecks in high-throughput structural determination by X-ray crystallography. Structural genomics projects have addressed this issue by using robots to set up automated crystal screens using nanodrop technology. This has moved the bottleneck from obtaining the first crystal hit to obtaining diffraction-quality crystals, as crystal optimization is a notoriously slow process that is difficult to automatize. This article describes the high-throughput optimization strategies used in the Yeast Structural Genomics project, with selected successful examples.


Assuntos
Cristalografia por Raios X/métodos , Genômica/métodos , Robótica/métodos , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Cristalografia por Raios X/instrumentação , Genômica/instrumentação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 9): 1562-8, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15333926

RESUMO

A statistical experimental design approach was used to prepare a set of solutions for the screening of protein crystallization conditions. This approach is shown to be amenable to quantitative evaluation and therefore to the rational optimization of the screening results. All solutions contain a cryoprotectant, thus eliminating the need for subsequent optimization of crystal freezing conditions.


Assuntos
Cristalografia por Raios X/estatística & dados numéricos , Proteínas/química , Algoritmos , Cátions/química , Cristalização , Interpretação Estatística de Dados , Congelamento , Concentração de Íons de Hidrogênio , Modelos Estatísticos , Software , Soluções , Solventes
12.
J Biol Chem ; 279(22): 23447-52, 2004 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-15020593

RESUMO

Allantoicase (EC 3.5.3.4) catalyzes the conversion of allantoate into ureidoglycolate and urea, one of the final steps in the degradation of purines to urea. The mechanism of most enzymes involved in this pathway, which has been known for a long time, is unknown. In this paper we describe the three-dimensional crystal structure of the yeast allantoicase determined at a resolution of 2.6 A by single anomalous diffraction. This constitutes the first structure for an enzyme of this pathway. The structure reveals a repeated jelly roll beta-sheet motif, also present in proteins of unrelated biochemical function. Allantoicase has a hexameric arrangement in the crystal (dimer of trimers). Analysis of the protein sequence against the structural data reveals the presence of two totally conserved surface patches, one on each jelly roll motif. The hexameric packing concentrates these patches into conserved pockets that probably constitute the active site.


Assuntos
Saccharomyces cerevisiae/enzimologia , Ureo-Hidrolases/química , Sequência de Aminoácidos , Clonagem Molecular , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Sequências Repetitivas de Ácido Nucleico , Alinhamento de Sequência , Ureo-Hidrolases/genética
13.
J Biol Chem ; 279(1): 619-25, 2004 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-14573601

RESUMO

Chorismate synthase (EC 4.2.3.5), the seventh enzyme in the shikimate pathway, catalyzes the transformation of 5-enolpyruvylshikimate 3-phosphate (EPSP) to chorismate, which is the last common precursor in the biosynthesis of numerous aromatic compounds in bacteria, fungi, and plants. The chorismate synthase reaction involves a 1,4-trans-elimination of phosphoric acid from EPSP and has an absolute requirement for reduced FMN as a cofactor. We have determined the three-dimensional x-ray structure of the yeast chorismate synthase from selenomethionine-labeled crystals at 2.2-A resolution. The structure shows a novel betaalphabetaalpha fold consisting of an alternate tight packing of two alpha-helical and two beta-sheet layers, showing no resemblance to any documented protein structure. The molecule is arranged as a tight tetramer with D2 symmetry, in accordance with its quaternary structure in solution. Electron density is missing for 23% of the amino acids, spread over sequence regions that in the three-dimensional structure converge on the surface of the protein. Many totally conserved residues are contained within these regions, and they probably form a structured but mobile domain that closes over a cleft upon substrate binding and catalysis. This hypothesis is supported by previously published spectroscopic measurements implying that the enzyme undergoes considerable structural changes upon binding of both FMN and EPSP.


Assuntos
Fósforo-Oxigênio Liases/química , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Clonagem Molecular , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Fósforo-Oxigênio Liases/metabolismo , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
14.
J Biol Chem ; 279(9): 8351-8, 2004 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-14660564

RESUMO

The important role of the serine/threonine protein phosphatase 2A (PP2A) in various cellular processes requires a precise and dynamic regulation of PP2A activity, localization, and substrate specificity. The regulation of the function of PP2A involves the reversible methylation of the COOH group of the C-terminal leucine of the catalytic subunit, which, in turn, controls the enzyme's heteromultimeric composition and confers different protein recognition and substrate specificity. We have determined the structure of PPM1, the yeast methyltransferase responsible for methylation of PP2A. The structure of PPM1 reveals a common S-adenosyl-l-methionine-dependent methyltransferase fold, with several insertions conferring the specific function and substrate recognition. The complexes with the S-adenosyl-l-methionine methyl donor and the S-adenosyl-l-homocysteine product and inhibitor unambiguously revealed the co-substrate binding site and provided a convincing hypothesis for the PP2A C-terminal peptide binding site. The structure of PPM1 in a second crystal form provides clues to the dynamic nature of the PPM1/PP2A interaction.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , Proteínas Metiltransferases/química , Proteínas Metiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , Sequência Conservada , Humanos , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Fosfoproteínas Fosfatases/química , Dobramento de Proteína , Proteína Fosfatase 2 , S-Adenosilmetionina/metabolismo , Alinhamento de Sequência , Relação Estrutura-Atividade , Especificidade por Substrato
15.
J Biol Chem ; 278(50): 50371-6, 2003 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-14514667

RESUMO

Phox homology (PX) domains have been recently identified in a number of different proteins and are involved in various cellular functions such as vacuolar targeting and membrane protein trafficking. It was shown that these modules of about 130 amino acids specifically binding to phosphoinositides and that this interaction is crucial for their cellular function. The yeast genome contains 17 PX domain proteins. One of these, Grd19p, is involved in the localization of the late Golgi membrane proteins DPAP A and Kex2p. Grd19p consists of the PX domain with 30 extra residues at the N-terminal and is homologous to the functionally characterized human sorting nexin protein SNX3. We determined the 2.0 A crystal structure of Grd19p in the free form and in complex with d-myo-phosphatidylinositol 3-phosphate (diC4PtdIns(3)P), representing the first case of both free and ligand-bound conformations of the same PX module. The ligand occupies a well defined positively charged binding pocket at the interface between the beta-sheet and alpha-helical parts of the molecule. The structure of the free and bound protein are globally similar but show some significant differences in a region containing a polyproline peptide and a putative membrane attachment site.


Assuntos
Proteínas de Transporte/química , Fosfatos/química , Monoéster Fosfórico Hidrolases/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Proteínas Fúngicas/química , Genoma Fúngico , Complexo de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Fases de Leitura Aberta , Peptídeos/química , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
16.
J Synchrotron Radiat ; 10(Pt 1): 4-8, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12511784

RESUMO

A canonical structural genomics programme is being conducted at the Paris-Sud campus area on baker's yeast proteins. Experimental strategies, first results and identified bottlenecks are presented. The actual or potential contributions to the structural genomics of several experimental structure-determination methods are discussed.


Assuntos
Proteínas Fúngicas/química , Genômica , Fases de Leitura Aberta/genética , Clonagem Molecular , Escherichia coli/genética , Proteínas Fúngicas/genética , Estrutura Molecular , Conformação Proteica , Proteínas Recombinantes/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA