RESUMO
Structured light offers wider bandwidths and higher security for communication. However, propagation through complex random media, such as the Earth's atmosphere, typically induces intermodal crosstalk. We show numerically and experimentally that coupling of photonic orbital angular momentum modes is governed by a universal function of a single parameter: the ratio between the random medium's and the beam's transverse correlation lengths, even in the regime of pronounced intensity fluctuations.
RESUMO
We show that instantaneous spatial singular modes of light in a dynamically evolving, turbulent atmosphere offer significantly improved high-fidelity signal transmission as compared to standard encoding bases corrected by adaptive optics. Their enhanced stability in stronger turbulence is associated with a subdiffusive algebraic decay of the transmitted power with evolution time.
RESUMO
Recent works identified resolution limits for the distance between incoherent point sources. However, it remains unclear how to choose suitable observables and estimators to reach these limits in practical situations. Here, we show how estimators saturating the Cramér-Rao bound for the distance between two thermal point sources can be constructed using an optimally designed observable in the presence of practical imperfections, such as misalignment, cross talk, and detector noise.