RESUMO
The opioid overdose crisis is a global health challenge. Fentanyl, an exceedingly potent synthetic opioid, has emerged as a leading contributor to the surge in opioid-related overdose deaths. The surge in overdose fatalities, particularly due to illicitly manufactured fentanyl and its contamination of street drugs, emphasizes the urgency for drug-testing technologies that can quickly and accurately identify fentanyl from other drugs and quantify trace amounts of fentanyl. In this paper, gold nanoparticle (AuNP)-decorated single-walled carbon nanotube (SWCNT)-based field-effect transistors (FETs) are utilized for machine learning-assisted identification of fentanyl from codeine, hydrocodone, and morphine. The unique sensing performance of fentanyl led to use machine learning approaches for accurate identification of fentanyl. Employing linear discriminant analysis (LDA) with a leave-one-out cross-validation approach, a validation accuracy of 91.2% is achieved. Meanwhile, density functional theory (DFT) calculations reveal the factors that contributed to the enhanced sensitivity of the Au-SWCNT FET sensor toward fentanyl as well as the underlying sensing mechanism. Finally, fentanyl antibodies are introduced to the Au-SWCNT FET sensor as specific receptors, expanding the linear range of the sensor in the lower concentration range, and enabling ultrasensitive detection of fentanyl with a limit of detection at 10.8 fg mL-1.
Assuntos
Fentanila , Ouro , Aprendizado de Máquina , Nanopartículas Metálicas , Nanotubos de Carbono , Fentanila/análise , Ouro/química , Nanotubos de Carbono/química , Nanopartículas Metálicas/química , Transistores EletrônicosRESUMO
Crucial steps toward designing water sorption materials and fine-tuning their properties for specific applications include precise identification of adsorption sites and establishment of rigorous molecular-level insight into the water adsorption process. We report stepwise crystallographic mapping and density functional theory computations of adsorbed water molecules in ALP-MOF-1, a metal-organic framework decorated with distinct open metal sites and carbonyl functional groups that serve as water anchoring sites for seeding the nucleation of a complex water network. Identification of an unusual water adsorption step in ALP-MOF-1 motivated the tuning of metal ion composition to adjust water uptake. These studies provide direct evidence that the identity of the open metal sites in MOFs can dramatically affect water adsorption behavior between 0 and â¼20% RH and that multiple proximal water anchoring sites along the MOF skeleton facilitate water uptake which could be potentially useful for applications requiring rapid and energetically facile water sorption.
Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Adsorção , Água/química , MetaisRESUMO
The interaction between CO2 and ultrathin ZnO supported on Au(111) has been studied using temperature programmed desorption (TPD) and density functional theory (DFT) calculations. We find that CO2 binds weakly on the planar ZnO bilayer and trilayer surfaces, desorbing at T = 130 K. CO2 binds more strongly at the steps formed between ZnO bilayers and trilayers, desorbing at T = 285-320 K depending upon the CO2 exposure. The adsorption energies determined from DFT calculations for CO2 on the ZnO planar surfaces and at the steps are â¼5.8 and 19.0 kcal mol-1, respectively, agreeing with the apparent activation energies of desorption (Ed) estimated based on the TPD peaks at the limit of low CO2 exposures (7.7 and 19.5 kcal mol-1, respectively). The DFT calculations further identify that the most stable adsorption configuration of CO2 at the steps of ultrathin ZnO is facilitated by the geometry and coordination of the Zn cations and O anions near the step region. Specifically, the enhanced adsorption takes place via bonding of both the C and O atoms of the CO2 molecule to the tri-fold coordinated O anions at the trilayer edge and to the neighboring Zn cations on the bilayer terrace, respectively, leading to CO2 bending and formation of a carbonate-like species.
RESUMO
Because of their unique stacked, cup-shaped, hollow compartments, nitrogen-doped carbon nanotube cups (NCNCs) have promising potential as nanoscale containers. Individual NCNCs are isolated from their stacked structure through acid oxidation and subsequent probe-tip sonication. The NCNCs are then effectively corked with gold nanoparticles (GNPs) by sodium citrate reduction with chloroauric acid, forming graphitic nanocapsules with significant surface-enhanced Raman signature. Mechanistically, the growth of the GNP corks starts from the nucleation and welding of gold seeds on the open rims of NCNCs enriched with nitrogen functionalities, as confirmed by density functional theory calculations. A potent oxidizing enzyme of neutrophils, myeloperoxidase (MPO), can effectively open the corked NCNCs through GNP detachment, with subsequent complete enzymatic degradation of the graphitic shells. This controlled opening and degradation was further carried out in vitro with human neutrophils. Furthermore, the GNP-corked NCNCs were demonstrated to function as novel drug delivery carriers, capable of effective (i) delivery of paclitaxel to tumor-associated myeloid-derived suppressor cells (MDSC), (ii) MPO-regulated release, and (iii) blockade of MDSC immunosuppressive potential.
Assuntos
Ouro/química , Conformação Molecular , Nanotubos de Carbono/química , Peroxidase/metabolismo , Animais , Linhagem Celular Tumoral , Citratos/química , Humanos , Peróxido de Hidrogênio/química , Nanopartículas Metálicas/química , Camundongos , Modelos Moleculares , Neutrófilos/metabolismo , Oxirredução , Cloreto de Sódio/química , Citrato de SódioRESUMO
RATIONALE: Previously, we demonstrated that a deoxycorticosterone acetate (DOCA)-salt hypertensive mouse model produces cardiac oxidative stress and diastolic dysfunction with preserved systolic function. Oxidative stress has been shown to increase late inward sodium current (I(Na)), reducing the net cytosolic Ca(2+) efflux. OBJECTIVE: Oxidative stress in the DOCA-salt model may increase late I(Na), resulting in diastolic dysfunction amenable to treatment with ranolazine. METHODS AND RESULTS: Echocardiography detected evidence of diastolic dysfunction in hypertensive mice that improved after treatment with ranolazine (E/E':sham, 31.9 ± 2.8, sham+ranolazine, 30.2 ± 1.9, DOCA-salt, 41.8 ± 2.6, and DOCA-salt+ranolazine, 31.9 ± 2.6; P=0.018). The end-diastolic pressure-volume relationship slope was elevated in DOCA-salt mice, improving to sham levels with treatment (sham, 0.16 ± 0.01 versus sham+ranolazine, 0.18 ± 0.01 versus DOCA-salt, 0.23 ± 0.2 versus DOCA-salt+ranolazine, 0.17 ± 0.0 1 mm Hg/L; P<0.005). DOCA-salt myocytes demonstrated impaired relaxation, τ, improving with ranolazine (DOCA-salt, 0.18 ± 0.02, DOCA-salt+ranolazine, 0.13 ± 0.01, sham, 0.11 ± 0.01, sham+ranolazine, 0.09 ± 0.02 seconds; P=0.0004). Neither late I(Na) nor the Ca(2+) transients were different from sham myocytes. Detergent extracted fiber bundles from DOCA-salt hearts demonstrated increased myofilament response to Ca(2+) with glutathionylation of myosin binding protein C. Treatment with ranolazine ameliorated the Ca(2+) response and cross-bridge kinetics. CONCLUSIONS: Diastolic dysfunction could be reversed by ranolazine, probably resulting from a direct effect on myofilaments, indicating that cardiac oxidative stress may mediate diastolic dysfunction through altering the contractile apparatus.
Assuntos
Acetanilidas/farmacologia , Cálcio/metabolismo , Diástole/efeitos dos fármacos , Insuficiência Cardíaca Diastólica/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Miofibrilas/efeitos dos fármacos , Piperazinas/farmacologia , Acetanilidas/sangue , Animais , Desoxicorticosterona/toxicidade , Diástole/fisiologia , Modelos Animais de Doenças , Inibidores Enzimáticos/sangue , Inibidores Enzimáticos/farmacologia , Insuficiência Cardíaca Diastólica/induzido quimicamente , Insuficiência Cardíaca Diastólica/fisiopatologia , Camundongos , Mineralocorticoides/toxicidade , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Miofibrilas/metabolismo , Estresse Oxidativo/fisiologia , Piperazinas/sangue , Ranolazina , Sódio/metabolismo , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/fisiopatologiaRESUMO
Polymeric graphitic carbon nitride (gCN) materials have received great attention in the fields of photo and electrocatalysis due to their distinct properties in metal-free systems with high physicochemical stability. Nevertheless, the activity of undoped gCN is limited due to its relatively low specific surface area, low conductivity, and poor dispersibility. Doping Gd atoms in a gCN matrix is an efficient strategy to fine-tune its catalytic activity and its electronic structure. Herein, the influence of various wt% of gadolinium (Gd) doped in melon-type carbon nitride was systematically investigated. Gadolinium-doped graphitic carbon nitride (GdgCN) was synthesized by adding gadolinium nitrate to dicyandiamide during polymerization. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results revealed that the crystallinity and the morphological properties are influenced by the % of Gd doping. Furthermore, X-ray photoelectron spectroscopy (XPS) studies revealed that the gadolinium ions bonded with nitrogen atoms. Complementary density functional theory (DFT) calculations illustrate possible bonding configurations of Gd ions both in bulk material and on ultrathin melon layers and provide evidence for the corresponding bandgap modifications induced by gadolinium doping.
RESUMO
The unique physical and chemical properties of single-walled carbon nanotubes (SWNTs) make them ideal building blocks for the construction of hybrid nanostructures. In addition to increasing the material complexity and functionality, SWNTs can probe the interfacial processes in the hybrid system. In this work, SWNT-TiO2 core/shell hybrid nanostructures were found to exhibit unique electrical behavior in response to UV illumination and acetone vapors. By experimental and theoretical studies of UV and acetone sensitivities of different SWNT-TiO2 hybrid systems, we established a fundamental understanding on the interfacial charge transfer between photoexcited TiO2 and SWNTs as well as the mechanism of acetone sensing. We further demonstrated a practical application of photoinduced acetone sensitivity by fabricating a microsized room temperature acetone sensor that showed fast, linear, and reversible detection of acetone vapors with concentrations in few parts per million range.
RESUMO
Using scanning tunneling microscopy we observed reaction products of two chemisorbed thiolate species, methylthiolate and phenylthiolate, on the Au(111) surface. Despite the apparent stability, organometallic complexes of methyl- and phenylthiolate with the gold-adatom (RS-Au-SR, with R as the hydrocarbon group) undergo a stoichiometric exchange reaction, forming hybridized CH3S-Au-SPh complexes. Complementary density functional theory calculations suggest that the reaction is most likely mediated by a monothiolate RS-Au complex bonded to the gold surface, which forms a trithiolate RS-Au-(SR)-Au-SR complex as a key intermediate. This work therefore reveals the novel chemical reactivity of the low-coverage "striped" phase of alkanethiols on gold and strongly points to the involvement of monoadatom thiolate intermediates in this reaction. By extension, such intermediates may be involved in the self-assembly process itself, shedding new light on this long-standing problem.
RESUMO
The lithium silicates have attracted scientific interest due to their potential use as high-temperature sorbents for CO2 capture. The electronic properties and thermodynamic stabilities of lithium silicates with different Li2O/SiO2 ratios (Li2O, Li8SiO6, Li4SiO4, Li6Si2O7, Li2SiO3, Li2Si2O5, Li2Si3O7, and α-SiO2) have been investigated by combining first-principles density functional theory with lattice phonon dynamics. All these lithium silicates examined are insulators with band-gaps larger than 4.5 eV. By decreasing the Li2O/SiO2 ratio, the first valence bandwidth of the corresponding lithium silicate increases. Additionally, by decreasing the Li2O/SiO2 ratio, the vibrational frequencies of the corresponding lithium silicates shift to higher frequencies. Based on the calculated energetic information, their CO2 absorption capabilities were extensively analyzed through thermodynamic investigations on these absorption reactions. We found that by increasing the Li2O/SiO2 ratio when going from Li2Si3O7 to Li8SiO6, the corresponding lithium silicates have higher CO2 capture capacity, higher turnover temperatures and heats of reaction, and require higher energy inputs for regeneration. Based on our experimentally measured isotherms of the CO2 chemisorption by lithium silicates, we found that the CO2 capture reactions are two-stage processes: (1) a superficial reaction to form the external shell composed of Li2CO3 and a metal oxide or lithium silicate secondary phase and (2) lithium diffusion from bulk to the surface with a simultaneous diffusion of CO2 into the shell to continue the CO2 chemisorption process. The second stage is the rate determining step for the capture process. By changing the mixing ratio of Li2O and SiO2, we can obtain different lithium silicate solids which exhibit different thermodynamic behaviors. Based on our results, three mixing scenarios are discussed to provide general guidelines for designing new CO2 sorbents to fit practical needs.
Assuntos
Dióxido de Carbono/química , Lítio/química , Teoria Quântica , Silicatos/química , Dióxido de Silício/química , Termodinâmica , Propriedades de SuperfícieRESUMO
The incidence of idiopathic pulmonary fibrosis (IPF) increases with age. The mechanisms that underlie the age-dependent risk for IPF are unknown. Based on studies that suggest an association of IPF and γherpesvirus infection, we infected young (2-3 mo) and old (≥18 mo) C57BL/6 mice with the murine γherpesvirus 68. Acute murine γherpesvirus 68 infection in aging mice resulted in severe pneumonitis and fibrosis compared with young animals. Progressive clinical deterioration and lung fibrosis in the late chronic phase of infection was observed exclusively in old mice with diminution of tidal volume. Infected aging mice showed higher expression of transforming growth factor-ß during the acute phase of infection. In addition, aging, infected mice showed elevation of proinflammatory cytokines and the fibrocyte recruitment chemokine, CXCL12, in bronchoalveolar lavage. Analyses of lytic virus infection and virus reactivation indicate that old mice were able to control chronic infection and elicit antivirus immune responses. However, old, infected mice showed a significant increase in apoptotic responses determined by in situ terminal deoxynucleotidyl transferase dUTP nick end labeling assay, levels of caspase-3, and expression of the proapoptotitc molecule, Bcl-2 interacting mediator. Apoptosis of type II lung epithelial cells in aging lungs was accompanied by up-regulation of endoplasmic reticulum stress marker, binding immunoglobulin protein, and splicing of X-box-binding protein 1. These results indicate that the aging lung is more susceptible to injury and fibrosis associated with endoplasmic reticulum stress, apoptosis of type II lung epithelial cells, and activation of profibrotic pathways.
Assuntos
Retículo Endoplasmático/metabolismo , Fibrose Pulmonar/metabolismo , Estresse Fisiológico , Animais , Apoptose , Western Blotting , Líquido da Lavagem Broncoalveolar , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Fator de Crescimento Transformador beta/metabolismoRESUMO
Controlled self-assembly of zero-dimensional gold nanoparticles and construction of complex gold nanostructures from these building blocks could significantly extend their applications in many fields. Carbon nanotubes are one of the most promising inorganic templates for this strategy because of their unique physical, chemical, and mechanical properties, which translate into numerous potential applications. Here we report the bottom-up synthesis of gold nanowires in aqueous solution through self-assembly of gold nanoparticles on single-walled carbon nanotubes followed by thermal-heating-induced nanowelding. We investigate the mechanism of this process by exploring different graphitic templates. The experimental work is assisted by computational studies that provide additional insight into the self-assembly and nanowelding mechanism. We also demonstrate the chemical sensitivity of the nanomaterial to parts-per-billion concentrations of hydrogen sulfide with potential applications in industrial safety and personal healthcare.
RESUMO
The aims of this study were designed to determine whether liraglutide, a long-acting glucagon-like peptide, could reverse the adverse effects of a diet high in fat that also contained trans-fat and high-fructose corn syrup (ALIOS diet). Specifically, we examined whether treatment with liraglutide could reduce hepatic insulin resistance and steatosis as well as improve cardiac function. Male C57BL/6J mice were pair fed or fed ad libitum either standard chow or the ALIOS diet. After 8 wk the mice were further subdivided and received daily injections of either liraglutide or saline for 4 wk. Hyperinsulinemic-euglycemic clamp studies were performed after 6 wk, revealing hepatic insulin resistance. Glucose tolerance and insulin resistance tests were performed at 8 and 12 wk prior to and following liraglutide treatment. Liver pathology, cardiac measurements, blood chemistry, and RNA and protein analyses were performed. Clamp studies revealed hepatic insulin resistance after 6 wk of ALIOS diet. Liraglutide reduced visceral adiposity and liver weight (P < 0.001). As expected, liraglutide improved glucose and insulin tolerance. Liraglutide improved hypertension (P < 0.05) and reduced cardiac hypertrophy. Surprisingly, liver from liraglutide-treated mice had significantly higher levels of fatty acid binding protein, acyl-CoA oxidase II, very long-chain acyl-CoA dehydrogenase, and microsomal triglyceride transfer protein. We conclude that liraglutide reduces the harmful effects of an ALIOS diet by improving insulin sensitivity and by reducing lipid accumulation in liver through multiple mechanisms including, transport, and increase ß-oxidation.
Assuntos
Cardiomegalia/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Adiposidade/efeitos dos fármacos , Animais , Cardiomegalia/etiologia , Fígado Gorduroso/etiologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Teste de Tolerância a Glucose , Hipertensão/tratamento farmacológico , Hipertensão/etiologia , Resistência à Insulina , Liraglutida , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Adsorption and reactions of CO(2) in the presence of H(2)O and OH species on the TiO(2) rutile (110)-(1×1) surface were investigated using dispersion-corrected density functional theory and scanning tunneling microscopy. The coadsorbed H(2)O (OH) species slightly increase the CO(2) adsorption energies, primarily through formation of hydrogen bonds, and create new binding configurations that are not present on the anhydrous surface. Proton transfer reactions to CO(2) with formation of bicarbonate and carbonic acid species were investigated and found to have barriers in the range 6.1-12.8 kcal/mol, with reactions involving participation of two or more water molecules or OH groups having lower barriers than reactions involving a single adsorbed water molecule or OH group. The reactions to form the most stable adsorbed formate and bicarbonate species are exothermic relative to the unreacted adsorbed CO(2) and H(2)O (OH) species, with formation of the bicarbonate species being favored. These results are consistent with single crystal measurements which have identified formation of bicarbonate-type species following coadsorption of CO(2) and water on rutile (110).
RESUMO
Graphene is a novel two-dimensional nanomaterial that holds great potential in electronic and sensor applications. By etching the edges to form nanoribbons or introducing defects on the basal plane, it has been demonstrated that the physical and chemical properties of graphene can be drastically altered. However, the lithographic or chemical techniques required to reliably produce such nanoribbons remain challenging. Here, we report the fabrication of nanosensors based on holey reduced graphene oxide (hRGO), which can be visualized as interconnected graphene nanoribbons. In our method, enzymatic oxidation generated holes within the basal plane of graphene oxide, and after reduction with hydrazine, hRGO was formed. When decorated with Pt nanoparticles, hRGO exhibited a large and selective electronic response toward hydrogen gas. By combining experimental results and theoretical modeling, we propose that the increased edge-to-plane ratio, oxygen moieties, and Pt nanoparticle decoration were responsible for the observed gas sensing with hRGO nanostructures.
Assuntos
Grafite/química , Nanopartículas Metálicas/química , Platina/química , Hidrogênio/química , Óxidos/química , Propriedades de SuperfícieRESUMO
This paper reports the effect of mechanically applied elastic strain on the hydrogen evolution reaction (HER) activity of graphene under acidic conditions. An applied tensile strain of 0.2% on a graphene electrode is shown to lead to a 1-3% increase in the HER current. The tensile strain increases HER activity, whereas compressive strain decreases it. Density functional theory (DFT) calculations using a periodic graphene slab model predict an increase in the adsorption energy of the H atom with growing tensile strain, consistent with an enhancement of the current density in HER, similar to that observed experimentally.
RESUMO
The electron-induced dissociation of CO(2) adsorbed at the oxygen vacancy defect on the TiO(2)(110) surface has been investigated at the single-molecular level using scanning tunneling microscopy (STM). Electron injection from the STM tip into the adsorbed CO(2) induces the dissociation of CO(2). The oxygen vacancy defect is found to be healed by the oxygen atom released during the dissociation process. Statistical analysis shows that the dissociation of CO(2) is one-electron process. The bias-dependent dissociation yield reveals that the threshold energy for electron-induced dissociation of CO(2) is 1.4 eV above the conduction-band minimum of TiO(2). The formation of a transient negative ion by the injected electron is considered to be the key process in CO(2) dissociation.
RESUMO
Diastolic heart failure is a major cause of mortality in the elderly population. It is often preceded by diastolic dysfunction, which is characterized by impaired active relaxation and increased stiffness. We tested the hypothesis that senescence-prone (SAMP8) mice would develop diastolic dysfunction compared with senescence-resistant controls (SAMR1). Pulsed-wave Doppler imaging of the ratio of blood flow velocity through the mitral valve during early (E) vs. late (A) diastole was reduced from 1.3 ± 0.03 in SAMR1 mice to 1.2 ± 0.03 in SAMP8 mice (P < 0.05). Tissue Doppler imaging of the early (E') and late (A') diastolic mitral annulus velocities found E' reduced from 25.7 ± 0.9 mm/s in SAMR1 to 21.1 ± 0.8 mm/s in SAMP8 mice and E'/A' similarly reduced from 1.1 ± 0.02 to 0.8 ± 0.03 in SAMR1 vs. SAMP8 mice, respectively (P < 0.05). Invasive hemodynamics revealed an increased slope of the end-diastolic pressure-volume relationship (0.5 ± 0.05 vs. 0.8 ± 0.14; P < 0.05), indicating increased left ventricular chamber stiffness. There were no differences in systolic function or mean arterial pressure; however, diastolic dysfunction was accompanied by increased fibrosis in the hearts of SAMP8 mice. In SAMR1 vs. SAMP8 mice, interstitial collagen area increased from 0.3 ± 0.04 to 0.8 ± 0.09% and perivascular collagen area increased from 1.0 ± 0.11 to 1.6 ± 0.14%. Transforming growth factor-ß and connective tissue growth factor gene expression were increased in the hearts of SAMP8 mice (P < 0.05 for all data). In summary, SAMP8 mice show increased fibrosis and diastolic dysfunction similar to those seen in humans with aging and may represent a suitable model for future mechanistic studies.
Assuntos
Senilidade Prematura/complicações , Envelhecimento , Insuficiência Cardíaca/etiologia , Miocárdio/patologia , Disfunção Ventricular Esquerda/etiologia , Função Ventricular Esquerda , Fatores Etários , Envelhecimento/genética , Senilidade Prematura/genética , Análise de Variância , Animais , Cateterismo Cardíaco , Colágeno/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Diástole , Modelos Animais de Doenças , Ecocardiografia Doppler de Pulso , Elasticidade , Fibrose , Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta/genética , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda/genética , Pressão VentricularRESUMO
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disorder of unknown etiology. Several studies have demonstrated an association between pulmonary infection with a herpesvirus and IPF. Based on those observations, we have developed a mouse model in which interferon (IFN)gammaR(-/-) mice infected intranasally with murine gammaherpesvirus 68 (MHV68) develop lung fibrosis. We hypothesize that viral load was a critical factor for the development of fibrosis. Because nuclear factor (NF)-kappaB signaling is required to efficiently establish gammaherpesvirus, latency we infected IFNgammaR(-/-) mice with a MHV68 virus that expresses a mutant dominant inhibitor of the NF-kappaB signaling pathway, called IkappaBalphaM. Striking differences were observed at the onset of the chronic infection, which correlated with a decreased virus load in mice infected with MHV68-IkappaBalphaM compared with mice infected with control MHV68 (MHV68-MR). IFNgammaR(-/-) mice infected with MHV68-IkappaBalphaM lacked vasculitis and fibrosis 15 to 120 days post infection. Inhibition of NF-kappaB in MHV68-infected cells of the lungs diminished the expression of the fibrocyte recruiting chemokines monocyte chemoattractant protein 1 (MCP-1) and CXCL12, ameliorated macrophage expression of markers of alternative activation, and failed to increase expression of the integrin alphavbeta6, which is implicated in the activation of the profibrotic factor TGF-beta. Thus, the inhibition of NF-kappaB signaling in the infected lung cells of IFNgammaR(-/-) mice reduces virus persistence and ameliorates profibrotic events. Host determinants of latency might therefore represent new therapeutic targets for gammaherpesvirus-associated pulmonary fibrosis.
Assuntos
Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/patologia , Pulmão , NF-kappa B/antagonistas & inibidores , Fibrose Pulmonar/virologia , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Gammaherpesvirinae/patogenicidade , Inflamação/patologia , Inflamação/virologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Fibrose Pulmonar/patologia , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Carga Viral , Replicação Viral , Receptor de Interferon gamaRESUMO
Adsorption, diffusion, and dissociation of CO(2) on the anatase (101) surface were investigated using dispersion-corrected density functional theory. On the oxidized surface several different local minima were identified of which the most stable corresponds to a CO(2) molecule adsorbed at a five-fold coordinated Ti site in a tilted configuration. Surface diffusion is characterized by relatively small activation barriers. Preferential diffusion takes place along Ti rows and involves a cartwheel type of motion. The presence of a bridging oxygen defect or a surface interstitial Ti atom allows creation of several new strong binding configurations the most stable of which have bent CO(2) structures with simultaneous bonding to two surface Ti atoms. Subsurface oxygen vacancy or interstitial Ti defects are found to enhance the bonding of CO(2) molecules to the surface. CO(2) dissociation from these defect sites is calculated to be exothermic with barriers less than 21 kcal/mol. The use of such defects for catalytic activation of CO(2) on anatase (101) surface would require a mechanism for their regeneration.
Assuntos
Dióxido de Carbono/química , Teoria Quântica , Titânio/química , Adsorção , Propriedades de SuperfícieRESUMO
Adsorption of CO(2) on the rutile(110) surface was investigated using dispersion-corrected density functional theory and scanning tunneling microscopy (STM). On the oxidized surface the CO(2) molecules are found to bind most strongly at the five-fold coordinated Ti sites adopting tilted or flat configurations. The presence of bridging oxygen defects introduces two new adsorption structures, the most stable of which involves CO(2) molecules bound in tilted configurations at the defect sites. Inclusion of dispersion corrections in the density functional theory calculations leads to large increases in the calculated adsorption energies bringing these quantities into good agreement with experimental data. The STM measurements confirm two of the calculated adsorption configurations.