Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2311835, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38679787

RESUMO

The opioid overdose crisis is a global health challenge. Fentanyl, an exceedingly potent synthetic opioid, has emerged as a leading contributor to the surge in opioid-related overdose deaths. The surge in overdose fatalities, particularly due to illicitly manufactured fentanyl and its contamination of street drugs, emphasizes the urgency for drug-testing technologies that can quickly and accurately identify fentanyl from other drugs and quantify trace amounts of fentanyl. In this paper, gold nanoparticle (AuNP)-decorated single-walled carbon nanotube (SWCNT)-based field-effect transistors (FETs) are utilized for machine learning-assisted identification of fentanyl from codeine, hydrocodone, and morphine. The unique sensing performance of fentanyl led to use machine learning approaches for accurate identification of fentanyl. Employing linear discriminant analysis (LDA) with a leave-one-out cross-validation approach, a validation accuracy of 91.2% is achieved. Meanwhile, density functional theory (DFT) calculations reveal the factors that contributed to the enhanced sensitivity of the Au-SWCNT FET sensor toward fentanyl as well as the underlying sensing mechanism. Finally, fentanyl antibodies are introduced to the Au-SWCNT FET sensor as specific receptors, expanding the linear range of the sensor in the lower concentration range, and enabling ultrasensitive detection of fentanyl with a limit of detection at 10.8 fg mL-1.

2.
J Am Chem Soc ; 144(42): 19567-19575, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36228180

RESUMO

Crucial steps toward designing water sorption materials and fine-tuning their properties for specific applications include precise identification of adsorption sites and establishment of rigorous molecular-level insight into the water adsorption process. We report stepwise crystallographic mapping and density functional theory computations of adsorbed water molecules in ALP-MOF-1, a metal-organic framework decorated with distinct open metal sites and carbonyl functional groups that serve as water anchoring sites for seeding the nucleation of a complex water network. Identification of an unusual water adsorption step in ALP-MOF-1 motivated the tuning of metal ion composition to adjust water uptake. These studies provide direct evidence that the identity of the open metal sites in MOFs can dramatically affect water adsorption behavior between 0 and ∼20% RH and that multiple proximal water anchoring sites along the MOF skeleton facilitate water uptake which could be potentially useful for applications requiring rapid and energetically facile water sorption.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Adsorção , Água/química , Metais
3.
Phys Chem Chem Phys ; 19(7): 5296-5303, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28154866

RESUMO

The interaction between CO2 and ultrathin ZnO supported on Au(111) has been studied using temperature programmed desorption (TPD) and density functional theory (DFT) calculations. We find that CO2 binds weakly on the planar ZnO bilayer and trilayer surfaces, desorbing at T = 130 K. CO2 binds more strongly at the steps formed between ZnO bilayers and trilayers, desorbing at T = 285-320 K depending upon the CO2 exposure. The adsorption energies determined from DFT calculations for CO2 on the ZnO planar surfaces and at the steps are ∼5.8 and 19.0 kcal mol-1, respectively, agreeing with the apparent activation energies of desorption (Ed) estimated based on the TPD peaks at the limit of low CO2 exposures (7.7 and 19.5 kcal mol-1, respectively). The DFT calculations further identify that the most stable adsorption configuration of CO2 at the steps of ultrathin ZnO is facilitated by the geometry and coordination of the Zn cations and O anions near the step region. Specifically, the enhanced adsorption takes place via bonding of both the C and O atoms of the CO2 molecule to the tri-fold coordinated O anions at the trilayer edge and to the neighboring Zn cations on the bilayer terrace, respectively, leading to CO2 bending and formation of a carbonate-like species.

4.
J Am Chem Soc ; 137(2): 675-84, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25530234

RESUMO

Because of their unique stacked, cup-shaped, hollow compartments, nitrogen-doped carbon nanotube cups (NCNCs) have promising potential as nanoscale containers. Individual NCNCs are isolated from their stacked structure through acid oxidation and subsequent probe-tip sonication. The NCNCs are then effectively corked with gold nanoparticles (GNPs) by sodium citrate reduction with chloroauric acid, forming graphitic nanocapsules with significant surface-enhanced Raman signature. Mechanistically, the growth of the GNP corks starts from the nucleation and welding of gold seeds on the open rims of NCNCs enriched with nitrogen functionalities, as confirmed by density functional theory calculations. A potent oxidizing enzyme of neutrophils, myeloperoxidase (MPO), can effectively open the corked NCNCs through GNP detachment, with subsequent complete enzymatic degradation of the graphitic shells. This controlled opening and degradation was further carried out in vitro with human neutrophils. Furthermore, the GNP-corked NCNCs were demonstrated to function as novel drug delivery carriers, capable of effective (i) delivery of paclitaxel to tumor-associated myeloid-derived suppressor cells (MDSC), (ii) MPO-regulated release, and (iii) blockade of MDSC immunosuppressive potential.


Assuntos
Ouro/química , Conformação Molecular , Nanotubos de Carbono/química , Peroxidase/metabolismo , Animais , Linhagem Celular Tumoral , Citratos/química , Humanos , Peróxido de Hidrogênio/química , Nanopartículas Metálicas/química , Camundongos , Modelos Moleculares , Neutrófilos/metabolismo , Oxirredução , Cloreto de Sódio/química , Citrato de Sódio
5.
J Am Chem Soc ; 135(24): 9015-22, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23734594

RESUMO

The unique physical and chemical properties of single-walled carbon nanotubes (SWNTs) make them ideal building blocks for the construction of hybrid nanostructures. In addition to increasing the material complexity and functionality, SWNTs can probe the interfacial processes in the hybrid system. In this work, SWNT-TiO2 core/shell hybrid nanostructures were found to exhibit unique electrical behavior in response to UV illumination and acetone vapors. By experimental and theoretical studies of UV and acetone sensitivities of different SWNT-TiO2 hybrid systems, we established a fundamental understanding on the interfacial charge transfer between photoexcited TiO2 and SWNTs as well as the mechanism of acetone sensing. We further demonstrated a practical application of photoinduced acetone sensitivity by fabricating a microsized room temperature acetone sensor that showed fast, linear, and reversible detection of acetone vapors with concentrations in few parts per million range.

6.
J Am Chem Soc ; 135(13): 4922-5, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23469760

RESUMO

Using scanning tunneling microscopy we observed reaction products of two chemisorbed thiolate species, methylthiolate and phenylthiolate, on the Au(111) surface. Despite the apparent stability, organometallic complexes of methyl- and phenylthiolate with the gold-adatom (RS-Au-SR, with R as the hydrocarbon group) undergo a stoichiometric exchange reaction, forming hybridized CH3S-Au-SPh complexes. Complementary density functional theory calculations suggest that the reaction is most likely mediated by a monothiolate RS-Au complex bonded to the gold surface, which forms a trithiolate RS-Au-(SR)-Au-SR complex as a key intermediate. This work therefore reveals the novel chemical reactivity of the low-coverage "striped" phase of alkanethiols on gold and strongly points to the involvement of monoadatom thiolate intermediates in this reaction. By extension, such intermediates may be involved in the self-assembly process itself, shedding new light on this long-standing problem.

7.
Phys Chem Chem Phys ; 15(32): 13538-58, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23824271

RESUMO

The lithium silicates have attracted scientific interest due to their potential use as high-temperature sorbents for CO2 capture. The electronic properties and thermodynamic stabilities of lithium silicates with different Li2O/SiO2 ratios (Li2O, Li8SiO6, Li4SiO4, Li6Si2O7, Li2SiO3, Li2Si2O5, Li2Si3O7, and α-SiO2) have been investigated by combining first-principles density functional theory with lattice phonon dynamics. All these lithium silicates examined are insulators with band-gaps larger than 4.5 eV. By decreasing the Li2O/SiO2 ratio, the first valence bandwidth of the corresponding lithium silicate increases. Additionally, by decreasing the Li2O/SiO2 ratio, the vibrational frequencies of the corresponding lithium silicates shift to higher frequencies. Based on the calculated energetic information, their CO2 absorption capabilities were extensively analyzed through thermodynamic investigations on these absorption reactions. We found that by increasing the Li2O/SiO2 ratio when going from Li2Si3O7 to Li8SiO6, the corresponding lithium silicates have higher CO2 capture capacity, higher turnover temperatures and heats of reaction, and require higher energy inputs for regeneration. Based on our experimentally measured isotherms of the CO2 chemisorption by lithium silicates, we found that the CO2 capture reactions are two-stage processes: (1) a superficial reaction to form the external shell composed of Li2CO3 and a metal oxide or lithium silicate secondary phase and (2) lithium diffusion from bulk to the surface with a simultaneous diffusion of CO2 into the shell to continue the CO2 chemisorption process. The second stage is the rate determining step for the capture process. By changing the mixing ratio of Li2O and SiO2, we can obtain different lithium silicate solids which exhibit different thermodynamic behaviors. Based on our results, three mixing scenarios are discussed to provide general guidelines for designing new CO2 sorbents to fit practical needs.


Assuntos
Dióxido de Carbono/química , Lítio/química , Teoria Quântica , Silicatos/química , Dióxido de Silício/química , Termodinâmica , Propriedades de Superfície
8.
J Am Chem Soc ; 134(7): 3472-9, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22280145

RESUMO

Controlled self-assembly of zero-dimensional gold nanoparticles and construction of complex gold nanostructures from these building blocks could significantly extend their applications in many fields. Carbon nanotubes are one of the most promising inorganic templates for this strategy because of their unique physical, chemical, and mechanical properties, which translate into numerous potential applications. Here we report the bottom-up synthesis of gold nanowires in aqueous solution through self-assembly of gold nanoparticles on single-walled carbon nanotubes followed by thermal-heating-induced nanowelding. We investigate the mechanism of this process by exploring different graphitic templates. The experimental work is assisted by computational studies that provide additional insight into the self-assembly and nanowelding mechanism. We also demonstrate the chemical sensitivity of the nanomaterial to parts-per-billion concentrations of hydrogen sulfide with potential applications in industrial safety and personal healthcare.

9.
J Chem Phys ; 137(7): 074704, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22920134

RESUMO

Adsorption and reactions of CO(2) in the presence of H(2)O and OH species on the TiO(2) rutile (110)-(1×1) surface were investigated using dispersion-corrected density functional theory and scanning tunneling microscopy. The coadsorbed H(2)O (OH) species slightly increase the CO(2) adsorption energies, primarily through formation of hydrogen bonds, and create new binding configurations that are not present on the anhydrous surface. Proton transfer reactions to CO(2) with formation of bicarbonate and carbonic acid species were investigated and found to have barriers in the range 6.1-12.8 kcal/mol, with reactions involving participation of two or more water molecules or OH groups having lower barriers than reactions involving a single adsorbed water molecule or OH group. The reactions to form the most stable adsorbed formate and bicarbonate species are exothermic relative to the unreacted adsorbed CO(2) and H(2)O (OH) species, with formation of the bicarbonate species being favored. These results are consistent with single crystal measurements which have identified formation of bicarbonate-type species following coadsorption of CO(2) and water on rutile (110).

10.
Nano Lett ; 11(6): 2342-7, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21591652

RESUMO

Graphene is a novel two-dimensional nanomaterial that holds great potential in electronic and sensor applications. By etching the edges to form nanoribbons or introducing defects on the basal plane, it has been demonstrated that the physical and chemical properties of graphene can be drastically altered. However, the lithographic or chemical techniques required to reliably produce such nanoribbons remain challenging. Here, we report the fabrication of nanosensors based on holey reduced graphene oxide (hRGO), which can be visualized as interconnected graphene nanoribbons. In our method, enzymatic oxidation generated holes within the basal plane of graphene oxide, and after reduction with hydrazine, hRGO was formed. When decorated with Pt nanoparticles, hRGO exhibited a large and selective electronic response toward hydrogen gas. By combining experimental results and theoretical modeling, we propose that the increased edge-to-plane ratio, oxygen moieties, and Pt nanoparticle decoration were responsible for the observed gas sensing with hRGO nanostructures.


Assuntos
Grafite/química , Nanopartículas Metálicas/química , Platina/química , Hidrogênio/química , Óxidos/química , Propriedades de Superfície
11.
ACS Appl Mater Interfaces ; 14(8): 10691-10700, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35170299

RESUMO

This paper reports the effect of mechanically applied elastic strain on the hydrogen evolution reaction (HER) activity of graphene under acidic conditions. An applied tensile strain of 0.2% on a graphene electrode is shown to lead to a 1-3% increase in the HER current. The tensile strain increases HER activity, whereas compressive strain decreases it. Density functional theory (DFT) calculations using a periodic graphene slab model predict an increase in the adsorption energy of the H atom with growing tensile strain, consistent with an enhancement of the current density in HER, similar to that observed experimentally.

12.
J Am Chem Soc ; 133(26): 10066-9, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21648466

RESUMO

The electron-induced dissociation of CO(2) adsorbed at the oxygen vacancy defect on the TiO(2)(110) surface has been investigated at the single-molecular level using scanning tunneling microscopy (STM). Electron injection from the STM tip into the adsorbed CO(2) induces the dissociation of CO(2). The oxygen vacancy defect is found to be healed by the oxygen atom released during the dissociation process. Statistical analysis shows that the dissociation of CO(2) is one-electron process. The bias-dependent dissociation yield reveals that the threshold energy for electron-induced dissociation of CO(2) is 1.4 eV above the conduction-band minimum of TiO(2). The formation of a transient negative ion by the injected electron is considered to be the key process in CO(2) dissociation.

13.
J Chem Phys ; 135(12): 124701, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21974546

RESUMO

Adsorption, diffusion, and dissociation of CO(2) on the anatase (101) surface were investigated using dispersion-corrected density functional theory. On the oxidized surface several different local minima were identified of which the most stable corresponds to a CO(2) molecule adsorbed at a five-fold coordinated Ti site in a tilted configuration. Surface diffusion is characterized by relatively small activation barriers. Preferential diffusion takes place along Ti rows and involves a cartwheel type of motion. The presence of a bridging oxygen defect or a surface interstitial Ti atom allows creation of several new strong binding configurations the most stable of which have bent CO(2) structures with simultaneous bonding to two surface Ti atoms. Subsurface oxygen vacancy or interstitial Ti defects are found to enhance the bonding of CO(2) molecules to the surface. CO(2) dissociation from these defect sites is calculated to be exothermic with barriers less than 21 kcal/mol. The use of such defects for catalytic activation of CO(2) on anatase (101) surface would require a mechanism for their regeneration.


Assuntos
Dióxido de Carbono/química , Teoria Quântica , Titânio/química , Adsorção , Propriedades de Superfície
14.
J Chem Phys ; 134(10): 104707, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21405184

RESUMO

Adsorption of CO(2) on the rutile(110) surface was investigated using dispersion-corrected density functional theory and scanning tunneling microscopy (STM). On the oxidized surface the CO(2) molecules are found to bind most strongly at the five-fold coordinated Ti sites adopting tilted or flat configurations. The presence of bridging oxygen defects introduces two new adsorption structures, the most stable of which involves CO(2) molecules bound in tilted configurations at the defect sites. Inclusion of dispersion corrections in the density functional theory calculations leads to large increases in the calculated adsorption energies bringing these quantities into good agreement with experimental data. The STM measurements confirm two of the calculated adsorption configurations.

15.
Nano Lett ; 10(3): 958-63, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20155969

RESUMO

We have explored the room temperature response of metal nanoparticle decorated single-walled carbon nanotubes (NP-SWNTs) using a combination of electrical transport, optical spectroscopy, and electronic structure calculations. We have found that upon the electrochemical growth of Au NPs on SWNTs, there is a transfer of electron density from the SWNT to the NP species, and that adsorption of CO molecules on the NP surface is accompanied by transfer of electronic density back into the SWNT. Moreover, the electronic structure calculations indicate dramatic variations in the charge density at the NP-SWNT interface, which supports our previous observation that interfacial potential barriers dominate the electrical behavior of NP-SWNT systems.


Assuntos
Condutometria/instrumentação , Ouro/química , Modelos Teóricos , Nanotecnologia/métodos , Nanotubos de Carbono/química , Transdutores , Simulação por Computador , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Nanotubos de Carbono/ultraestrutura , Tamanho da Partícula
16.
ACS Appl Mater Interfaces ; 13(13): 15482-15489, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33780621

RESUMO

In this work, we demonstrate a facile synthesis of UiO-66-NH2 metal-organic framework (MOF)/oxidized single-walled carbon nanotubes (ox-SWCNTs) composite at room temperature. Acetic acid (HAc) was used as a modulator to manipulate the morphology of the MOF in these composites. With a zirconium oxide cluster (Zr) to 2-aminoteraphthalate linker (ATA) 1:1.42 ratio and acetic acid modulator, we achieved predominately heterogeneous MOF growth on the sidewalls of CNTs. Understanding the growth mechanism of these composites was facilitated by conducting DFT calculations to investigate the interactions between ox-SWCNTs and the MOF precursors. The synthesized composites combine both microporosity of the MOF and electrical conductivity of the SWCNTs. Gas sensing tests demonstrated higher response for UiO-66-NH2/ox-SWCNT hybrid toward dry air saturated with dimethyl methylphosphonate (DMMP) vapor compared to oxidized single-walled carbon nanotubes (ox-SWCNTs) alone.

17.
J Chem Phys ; 133(7): 074508, 2010 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-20726653

RESUMO

By combining density functional theory and lattice phonon dynamics, the thermodynamic properties of CO(2) absorption/desorption reactions with alkaline earth metal oxides MO and hydroxides M(OH)(2) (where M=Be,Mg,Ca,Sr,Ba) are analyzed. The heats of reaction and the chemical potential changes of these solids upon CO(2) capture reactions have been calculated and used to evaluate the energy costs. Relative to CaO, a widely used system in practical applications, MgO and Mg(OH)(2) systems were found to be better candidates for CO(2) sorbent applications due to their lower operating temperatures (600-700 K). In the presence of H(2)O, MgCO(3) can be regenerated into Mg(OH)(2) at low temperatures or into MgO at high temperatures. This transition temperature depends not only on the CO(2) pressure but also on the H(2)O pressure. Based on our calculated results and by comparing with available experimental data, we propose a general computational search methodology which can be used as a general scheme for screening a large number of solids for use as CO(2) sorbents.

18.
ACS Appl Mater Interfaces ; 11(44): 41588-41594, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31601095

RESUMO

Carbon nitride/reduced graphene oxide (rGO) van der Waals heterostructures (vdWH) have previously shown exceptional oxygen sensitivity via a photoredox mechanism, making it a potential material candidate for various applications such as oxygen reduction reaction catalysis and oxygen sensing. In this work, the electronic structure of a carbon nitride/rGO composite is modified through the introduction of copper nanoparticles (NPs). When incorporated into a chemiresistor device, this vdWH displayed a newfound CO2 sensitivity. The effects of humidity and light were investigated and found to be crucial components for the CO2 sensitivity. Density functional theory calculations performed on a carbon nitride/copper NP@rGO model system found an enhanced stabilization of CO2 caused by H-bonds between the carbon nitride layer and chemisorbed CO2 on copper, pointing to the important role played by humidity. The synergetic effect between the carbon nitride layer interfaced with CuNP@rGO, in combination with humidity and light (395 nm) irradiation, is found to be responsible for the newfound sensitivity toward CO2.

19.
ACS Appl Mater Interfaces ; 11(1): 1219-1227, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30547572

RESUMO

Carbon nanotube-based field-effect transistors (NTFETs) are ideal sensor devices as they provide rich information regarding carbon nanotube interactions with target analytes and have potential for miniaturization in diverse applications in medical, safety, environmental, and energy sectors. Herein, we investigate chemical detection with cross-sensitive NTFETs sensor arrays comprised of metal nanoparticle-decorated single-walled carbon nanotubes (SWCNTs). By combining analysis of NTFET device characteristics with supervised machine-learning algorithms, we have successfully discriminated among five selected purine compounds, adenine, guanine, xanthine, uric acid, and caffeine. Interactions of purine compounds with metal nanoparticle-decorated SWCNTs were corroborated by density functional theory calculations. Furthermore, by testing a variety of prepared as well as commercial solutions with and without caffeine, our approach accurately discerns the presence of caffeine in 95% of the samples with 48 features using a linear discriminant analysis and in 93.4% of the samples with only 11 features when using a support vector machine analysis. We also performed recursive feature elimination and identified three NTFET parameters, transconductance, threshold voltage, and minimum conductance, as the most crucial features to analyte prediction accuracy.

20.
ACS Appl Mater Interfaces ; 9(32): 27142-27151, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28737893

RESUMO

Melon, a polymeric, uncondensed graphitic carbon nitride with a two-dimensional structure, has been coupled with reduced graphene oxide (rGO) to create an oxygen chemiresistor sensor that is active under UV photoactivation. Oxygen gas is an important sensor target in a variety of areas including industrial safety, combustion process monitoring, as well as environmental and biomedical fields. Because of the intimate electrical interface formed between melon and rGO, charge transfer of photoexcited electrons occurs between the two materials when under UV (λ = 365 nm) irradiation. A photoredox mechanism wherein oxygen is reduced on the rGO surface provides the basis for sensing oxygen gas in the concentration range 300-100 000 ppm. The sensor response was found to be logarithmically proportional to oxygen gas concentration. DFT calculations of a melon-oxidized graphene composite found that slight protonation of melon leads to charge accumulation on the rGO layer and a corresponding charge depletion on the melon layer. This work provides an example of a metal-free system for solid-gas interface sensing via a photoredox mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA