Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36838941

RESUMO

In this work, bio-based hydrogel composites of xanthan gum and cellulose fibers were developed to be used both as soil conditioners and topsoil covers, to promote plant growth and forest protection. The rheological, morphological, and water absorption properties of produced hydrogels were comprehensively investigated, together with the analysis of the effect of hydrogel addition to the soil. Specifically, the moisture absorption capability of these hydrogels was above 1000%, even after multiple dewatering/rehydration cycles. Moreover, the soil treated with 1.8 wt% of these materials increased the water absorption capacity by approximately 60% and reduced the water evaporation rate, due to the formation of a physical network between the soil, xanthan gum and cellulose fibers. Practical experiments on the growth of herbaceous and tomato plants were also performed, showing that the addition of less than 2 wt% of hydrogels into the soil resulted in higher growth rate values than untreated soil. Furthermore, it has been demonstrated that the use of the produced topsoil covers helped promote plant growth. The exceptional water-regulating properties of the investigated materials could allow for the development of a simple, inexpensive and scalable technology to be extensively applied in forestry and/or agricultural applications, to improve plant resilience and face the challenges related to climate change.


Assuntos
Agricultura Florestal , Água , Polissacarídeos Bacterianos , Solo , Celulose , Hidrogéis
2.
Materials (Basel) ; 16(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068029

RESUMO

The aim of this study was to investigate the effect of different types of natural cellulose-based fillers on the properties of Xanthan gum (XG) in order to develop novel bio-based soil conditioners (SCs) that could be used in forestry and agricultural applications. Rheological measurements highlighted that SCs with cellulose fillers characterized by a high aspect ratio and low oxide ash content exhibited an average increase of 21% in yield stress compared to neat Xanthan gum. The presence of cellulose fillers in the composites resulted in a slower water release than that of neat XG, limiting the volumetric shrinkage during the drying process. Furthermore, an analysis of the water absorption and water retention capacity of soils treated with the different SCs was carried out, demonstrating that the addition of 1.8 wt.% of SC with optimized composition to the soil led to an increase in water absorption capacity from 34% up to 69%. From the soil water retention curves, it was observed that the addition of SCs significantly increased the amount of water effectively available for plants in the area between field capacity and permanent wilting point (100-1000 kPa). From practical experiments on grass growth, it was observed that these SCs improved the water regulation of the soil, thus increasing the probability of plant survival under drought conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA