Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Funct Biomater ; 14(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36662072

RESUMO

The production of nanoparticles for biomedical applications (namely with antimicrobial and anticancer properties) has been significantly hampered using traditional physicochemical approaches, which often produce nanostructures with poor biocompatibility properties requiring post-synthesis functionalization to implement features that such biomedical applications require. As an alternative, green nanotechnology and the synthesis of environmentally friendly nanomaterials have been gaining attention over the last few decades, using living organisms or biomolecules derived from them, as the main raw materials to produce cost-effective, environmentally friendly, and ready-to-be-used nanomaterials. In this article and building upon previous knowledge, we have designed and implemented the synthesis of selenium and tellurium nanoparticles using extracts from fresh jalapeño and habanero peppers. After characterization, in this study, the nanoparticles were tested for both their antimicrobial and anticancer features against isolates of antibiotic-resistant bacterial strains and skin cancer cell lines, respectively. The nanosystems produced nanoparticles via a fast, eco-friendly, and cost-effective method showing different antimicrobial profiles between elements. While selenium nanoparticles lacked an antimicrobial effect at the concentrations tested, those made of tellurium produced a significant antibacterial effect even at the lowest concentration tested. These effects were correlated when the nanoparticles were tested for their cytocompatibility and anticancer properties. While selenium nanoparticles were biocompatible and had a dose-dependent anticancer effect, tellurium-based nanoparticles lacked such biocompatibility while exerting a powerful anti-cancer effect. Further, this study demonstrated a suitable mechanism of action for killing bacteria and cancer cells involving reactive oxygen species (ROS) generation. In summary, this study introduces a new green nanomedicine synthesis approach to create novel selenium and tellurium nanoparticles with attractive properties for numerous biomedical applications.

2.
RSC Adv ; 11(23): 13711-13721, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257952

RESUMO

Glucose determination is an essential procedure in different fields, used in clinical analysis for the prevention and monitoring of diabetes. In this work, modified carbon paste electrodes with Cu2O nanocubes (Cu2O NCs) were developed to test electrochemical glucose detection. The synthesis of the Cu2O NCs was achieved by a green method using starch as the capping agent, obtaining cubic-like morphologies and particle sizes from 227 to 123 nm with increasing amounts of the capping agent, as corroborated by electron microscopy analysis. Their crystalline structure and purity were determined by X-ray diffraction. The capability of starch as a capping agent was verified by Fourier-transform infrared spectroscopy, in which the presence of functional groups of this biopolymer in the Cu2O NCs were identified. The electrochemical response to glucose oxidation was determined by cyclic voltammetry, obtaining a linear response of the electrical current as a function of glucose concentration in the range 100-700 µM, with sensitivities from 85.6 to 238.8 µA mM-1 cm-2, depending on the amount of starch used in the synthesis of the Cu2O NCs.

3.
Nanomaterials (Basel) ; 11(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670538

RESUMO

Cancer and antimicrobial resistance to antibiotics are two of the most worrying healthcare concerns that humanity is facing nowadays. Some of the most promising solutions for these healthcare problems may come from nanomedicine. While the traditional synthesis of nanomaterials is often accompanied by drawbacks such as high cost or the production of toxic by-products, green nanotechnology has been presented as a suitable solution to overcome such challenges. In this work, an approach for the synthesis of tellurium (Te) nanostructures in aqueous media has been developed using aloe vera (AV) extracts as a unique reducing and capping agent. Te-based nanoparticles (AV-TeNPs), with sizes between 20 and 60 nm, were characterized in terms of physicochemical properties and tested for potential biomedical applications. A significant decay in bacterial growth after 24 h was achieved for both Methicillin-resistant Staphylococcus aureus and multidrug-resistant Escherichia coli at a relative low concentration of 5 µg/mL, while there was no cytotoxicity towards human dermal fibroblasts after 3 days of treatment. AV-TeNPs also showed anticancer properties up to 72 h within a range of concentrations between 5 and 100 µg/mL. Consequently, here, we present a novel and green approach to produce Te-based nanostructures with potential biomedical applications, especially for antibacterial and anticancer applications.

4.
Ther Adv Neurol Disord ; 4(6): 349-60, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22164189

RESUMO

OBJECTIVE: The prevalence of multiple sclerosis (MS) in Latin America varies across different studies but an intermediate risk and increased frequency of the disease have been reported in recent years. The circumstances of Latin American countries are different from those of Europe and North America, both in terms of differential diagnoses and disease management. METHODS: An online survey on MS was sent to 855 neurologists in nine Latin American countries. A panel of nine experts in MS analyzed the results. RESULTS: Diagnostic and therapeutic recommendations were outlined with special emphasis on the specific needs and circumstances of Latin America. The experts proposed guidelines for MS diagnosis, treatment, and follow up, highlighting the importance of considering endemic infectious diseases in the differential diagnoses of MS, the identification of patients at high risk of developing MS in order to maximize therapeutic opportunities, early treatment initiation, and cost-effective control of treatment efficacy, as well as global assessment of disability. CONCLUSIONS: The experts recommended that healthcare systems allocate a longer consultation time for patients with MS, which must be conducted by neurologists trained in the management of the disease. All drugs currently approved must be available in all Latin American countries and must be covered by healthcare plans. The expert panel supported the creation of a permanent forum to discuss future clinical and therapeutic recommendations that may be useful in Latin American countries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA