Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 627(8003): 358-366, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418885

RESUMO

Astrocytes are heterogeneous glial cells of the central nervous system1-3. However, the physiological relevance of astrocyte diversity for neural circuits and behaviour remains unclear. Here we show that a specific population of astrocytes in the central striatum expresses µ-crystallin (encoded by Crym in mice and CRYM in humans) that is associated with several human diseases, including neuropsychiatric disorders4-7. In adult mice, reducing the levels of µ-crystallin in striatal astrocytes through CRISPR-Cas9-mediated knockout of Crym resulted in perseverative behaviours, increased fast synaptic excitation in medium spiny neurons and dysfunctional excitatory-inhibitory synaptic balance. Increased perseveration stemmed from the loss of astrocyte-gated control of neurotransmitter release from presynaptic terminals of orbitofrontal cortex-striatum projections. We found that perseveration could be remedied using presynaptic inhibitory chemogenetics8, and that this treatment also corrected the synaptic deficits. Together, our findings reveal converging molecular, synaptic, circuit and behavioural mechanisms by which a molecularly defined and allocated population of striatal astrocytes gates perseveration phenotypes that accompany neuropsychiatric disorders9-12. Our data show that Crym-positive striatal astrocytes have key biological functions within the central nervous system, and uncover astrocyte-neuron interaction mechanisms that could be targeted in treatments for perseveration.


Assuntos
Astrócitos , Corpo Estriado , Ruminação Cognitiva , Cristalinas mu , Animais , Humanos , Camundongos , Astrócitos/metabolismo , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Edição de Genes , Técnicas de Inativação de Genes , Cristalinas mu/deficiência , Cristalinas mu/genética , Cristalinas mu/metabolismo , Ruminação Cognitiva/fisiologia , Transmissão Sináptica , Sistemas CRISPR-Cas , Neurônios Espinhosos Médios/metabolismo , Sinapses/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Terminações Pré-Sinápticas/metabolismo , Inibição Neural
2.
Nature ; 616(7958): 764-773, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046092

RESUMO

Astrocytes and neurons extensively interact in the brain. Identifying astrocyte and neuron proteomes is essential for elucidating the protein networks that dictate their respective contributions to physiology and disease. Here we used cell-specific and subcompartment-specific proximity-dependent biotinylation1 to study the proteomes of striatal astrocytes and neurons in vivo. We evaluated cytosolic and plasma membrane compartments for astrocytes and neurons to discover how these cells differ at the protein level in their signalling machinery. We also assessed subcellular compartments of astrocytes, including end feet and fine processes, to reveal their subproteomes and the molecular basis of essential astrocyte signalling and homeostatic functions. Notably, SAPAP3 (encoded by Dlgap3), which is associated with obsessive-compulsive disorder (OCD) and repetitive behaviours2-8, was detected at high levels in striatal astrocytes and was enriched within specific astrocyte subcompartments where it regulated actin cytoskeleton organization. Furthermore, genetic rescue experiments combined with behavioural analyses and molecular assessments in a mouse model of OCD4 lacking SAPAP3 revealed distinct contributions of astrocytic and neuronal SAPAP3 to repetitive and anxiety-related OCD-like phenotypes. Our data define how astrocytes and neurons differ at the protein level and in their major signalling pathways. Moreover, they reveal how astrocyte subproteomes vary between physiological subcompartments and how both astrocyte and neuronal SAPAP3 mechanisms contribute to OCD phenotypes in mice. Our data indicate that therapeutic strategies that target both astrocytes and neurons may be useful to explore in OCD and potentially other brain disorders.


Assuntos
Astrócitos , Neurônios , Transtorno Obsessivo-Compulsivo , Proteoma , Animais , Camundongos , Astrócitos/metabolismo , Neurônios/metabolismo , Transtorno Obsessivo-Compulsivo/metabolismo , Transtorno Obsessivo-Compulsivo/fisiopatologia , Proteoma/metabolismo , Biotinilação , Membrana Celular/metabolismo , Transdução de Sinais , Citosol/metabolismo , Homeostase , Fenótipo , Citoesqueleto de Actina/metabolismo
3.
Neurobiol Dis ; 130: 104501, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31226301

RESUMO

Diffusion tensor imaging (DTI) has been shown to detect white matter degeneration in multiple sclerosis (MS), a neurodegenerative autoimmune disease that presents with diffuse demyelination of the central nervous system. However, the utility of DTI in evaluating therapeutic remyelination has not yet been well-established. Here, we assessed the ability of DTI to distinguish between remyelination and neuroprotection following estrogen receptor ß ligand (Indazole chloride, IndCl) treatment, which has been previously shown to stimulate functional remyelination, in the cuprizone (CPZ) diet mouse model of MS. Adult C57BL/6 J male and female mice received a normal diet (control), demyelination-inducing CPZ diet (9wkDM), or CPZ diet followed by two weeks of a normal diet (i.e., remyelination period) with either IndCl (RM + IndCl) or vehicle (RM + Veh) injections. We evaluated tissue microstructure of the corpus callosum utilizing in vivo and ex vivo DTI and immunohistochemistry (IHC) for validation. Compared to control mice, the 9wkDM group showed decreased fractional anisotropy (FA), increased radial diffusivity (RD), and no changes in axial diffusivity (AD) both in vivo and ex vivo. Meanwhile, RM + IndCl groups showed increased FA and decreased RD ex vivo compared to the RM + Veh group, in accordance with the evidence of remyelination by IHC. In conclusion, the DTI technology used in the present study can identify some changes in myelination and is a valuable translational tool for evaluating MS pathophysiology and therapeutic efficacy.


Assuntos
Corpo Caloso/diagnóstico por imagem , Doenças Desmielinizantes/diagnóstico por imagem , Receptor beta de Estrogênio/agonistas , Indazóis/uso terapêutico , Esclerose Múltipla/diagnóstico por imagem , Fármacos Neuroprotetores/uso terapêutico , Remielinização/efeitos dos fármacos , Animais , Corpo Caloso/efeitos dos fármacos , Cuprizona , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Feminino , Indazóis/farmacologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia
4.
Nat Protoc ; 19(3): 896-927, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38062165

RESUMO

The central nervous system (CNS) comprises diverse and morphologically complex cells. To understand the molecular basis of their physiology, it is crucial to assess proteins expressed within intact cells. Commonly used methods utilize cell dissociation and sorting to isolate specific cell types such as neurons and astrocytes, the major CNS cells. Proteins purified from isolated cells are identified by mass spectrometry-based proteomics. However, dissociation and cell-sorting methods lead to near total loss of cellular morphology, thereby losing proteins from key relevant subcompartments such as processes, end feet, dendrites and axons. Here we provide a systematic protocol for cell- and subcompartment-specific labeling and identification of proteins found within intact astrocytes and neurons in vivo. This protocol utilizes the proximity-dependent biotinylation system BioID2, selectively expressed in either astrocytes or neurons, to label proximal proteins in a cell-specific manner. BioID2 is targeted genetically to assess the subproteomes of subcellular compartments such as the plasma membrane and sites of cell-cell contacts. We describe in detail the expression methods (variable timing), stereotaxic surgeries for expression (1-2 d and then 3 weeks), in vivo protein labeling (7 d), protein isolation (2-3 d), protein identification methods (2-3 d) and data analysis (1 week). The protocol can be applied to any area of the CNS in mouse models of physiological processes and for disease-related research.


Assuntos
Astrócitos , Neurônios , Camundongos , Animais , Biotinilação , Sistema Nervoso Central , Axônios/metabolismo , Proteínas/metabolismo
5.
Curr Biol ; 33(5): R200-R202, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36917946

RESUMO

Astrocytes, the most abundant glial cells in the central nervous system, play vital roles in maintaining neuronal function. A new study using focused ion-beam scanning electron microscopy reveals the architecture of astrocytes at the nanoscale and provides new insights on how astrocytes perform their diverse activities.


Assuntos
Astrócitos , Sistema Nervoso Central , Neuroglia , Neurônios
6.
Cell Rep ; 42(1): 111953, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640336

RESUMO

Huntington's disease (HD) is caused by expanded CAG repeats in the huntingtin gene (HTT) resulting in expression of mutant HTT proteins (mHTT) with extended polyglutamine tracts, including in striatal neurons and astrocytes. It is unknown whether pathophysiology in vivo can be attenuated by lowering mHTT in either cell type throughout the brain, and the relative contributions of neurons and astrocytes to HD remain undefined. We use zinc finger protein (ZFP) transcriptional repressors to cell-selectively lower mHTT in vivo. Astrocytes display loss of essential functions such as cholesterol metabolism that are partly driven by greater neuronal dysfunctions, which encompass neuromodulation, synaptic, and intracellular signaling pathways. Using transcriptomics, proteomics, electrophysiology, and behavior, we dissect neuronal and astrocytic contributions to HD pathophysiology. Remarkably, brain-wide delivery of neuronal ZFPs results in strong mHTT lowering, rescue of HD-associated behavioral and molecular phenotypes, and significant extension of lifespan, findings that support translational development.


Assuntos
Doença de Huntington , Animais , Doença de Huntington/genética , Doença de Huntington/metabolismo , Astrócitos/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Dedos de Zinco , Proteínas Mutantes/metabolismo , Modelos Animais de Doenças
7.
Science ; 378(6619): eadc9020, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36378959

RESUMO

Astrocytes, a type of glia, are abundant and morphologically complex cells. Here, we report astrocyte molecular profiles, diversity, and morphology across the mouse central nervous system (CNS). We identified shared and region-specific astrocytic genes and functions and explored the cellular origins of their regional diversity. We identified gene networks correlated with astrocyte morphology, several of which unexpectedly contained Alzheimer's disease (AD) risk genes. CRISPR/Cas9-mediated reduction of candidate genes reduced astrocyte morphological complexity and resulted in cognitive deficits. The same genes were down-regulated in human AD, in an AD mouse model that displayed reduced astrocyte morphology, and in other human brain disorders. We thus provide comprehensive molecular data on astrocyte diversity and mechanisms across the CNS and on the molecular basis of astrocyte morphology in health and disease.


Assuntos
Doença de Alzheimer , Astrócitos , Sistema Nervoso Central , Transcriptoma , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Astrócitos/classificação , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Modelos Animais de Doenças , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo
8.
J Public Health Dent ; 82(1): 3-10, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33554368

RESUMO

OBJECTIVE: To estimate the prevalence and severity of molar incisor hypomineralization (MIH) in 8 years old children living in an endemic fluorosis area. METHODS: MIH prevalence rate was determined from a study sample comprising 613 participants. They were recruited from 11 urban public schools with similar socio-economic status. Oral evaluations were performed and diagnosed MIH teeth were classified under Ghanim et al.'s criteria. Statistical descriptive and comparative analyzes were carried out. RESULTS: First permanent molars were the tooth group most affected, followed by the upper central incisors, lower central incisors, lower lateral incisors, and upper lateral incisors. There was no significant statistical difference by gender and by maxillary/mandible arches (P = 0.82 and 0.26, respectively). The frequency of MIH was more in molars compared to incisors (P < 0.02). CONCLUSIONS: The MIH prevalence in this study was 12.4 percent. According to the MIH severity, degree 2 was the most frequently detected (76.4 percent).


Assuntos
Hipoplasia do Esmalte Dentário , Fluorose Dentária , Criança , Hipoplasia do Esmalte Dentário/epidemiologia , Fluorose Dentária/epidemiologia , Humanos , Incisivo , Dente Molar , Prevalência
9.
Brain Pathol ; 31(2): 312-332, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33368801

RESUMO

Visual deficits are among the most prevalent symptoms in patients with multiple sclerosis (MS). To understand deficits in the visual pathway during MS and potential treatment effects, we used experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS. The afferent visual pathway was assessed in vivo using optical coherence tomography (OCT), electroretinography (ERG), and visually evoked cortical potentials (VEPs). Inflammation, demyelination, and neurodegeneration were examined by immunohistochemistry ex vivo. In addition, an immunomodulatory, remyelinating agent, the estrogen receptor ß ligand chloroindazole (IndCl), was tested for its therapeutic potential in the visual pathway. EAE produced functional deficits in visual system electrophysiology, including suppression of ERG and VEP waveform amplitudes and increased signal latencies. Therapeutic IndCl rescued overall visual system latency by VEP but had little impact on amplitude or ERG findings relative to vehicle. Faster VEP conduction in IndCl-treated mice was associated with enhanced myelin basic protein signal in all visual system structures examined. IndCl preserved retinal ganglion cells (RGCs) and oligodendrocyte density in the prechiasmatic white matter, but similar retinal nerve fiber layer thinning by OCT was noted in vehicle and IndCl-treated mice. Although IndCl differentially attenuated leukocyte and astrocyte staining signal throughout the structures analyzed, axolemmal varicosities were observed in all visual fiber tracts of mice with EAE irrespective of treatment, suggesting impaired axonal energy homeostasis. These data support incomplete functional recovery of VEP amplitude with IndCl, as fiber tracts displayed persistent axon pathology despite remyelination-induced decreases in latencies, evidenced by reduced optic nerve g-ratio in IndCl-treated mice. Although additional studies are required, these findings demonstrate the dynamics of visual pathway dysfunction and disability during EAE, along with the importance of early treatment to mitigate EAE-induced axon damage.


Assuntos
Compostos Azo/farmacologia , Encefalomielite Autoimune Experimental/patologia , Naftalenos/farmacologia , Remielinização/efeitos dos fármacos , Vias Visuais/efeitos dos fármacos , Vias Visuais/patologia , Animais , Potenciais Evocados Visuais/efeitos dos fármacos , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla , Degeneração Neural/patologia
10.
Neuron ; 108(6): 1146-1162.e10, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33086039

RESUMO

Astrocytes tile the central nervous system and are widely implicated in brain diseases, but the molecular mechanisms by which astrocytes contribute to brain disorders remain incompletely explored. By performing astrocyte gene expression analyses following 14 experimental perturbations of relevance to the striatum, we discovered that striatal astrocytes mount context-specific molecular responses at the level of genes, pathways, and upstream regulators. Through data mining, we also identified astrocyte pathways in Huntington's disease (HD) that were reciprocally altered with respect to the activation of striatal astrocyte G protein-coupled receptor (GPCR) signaling. Furthermore, selective striatal astrocyte stimulation of the Gi-GPCR pathway in vivo corrected several HD-associated astrocytic, synaptic, and behavioral phenotypes, with accompanying improvement of HD-associated astrocyte signaling pathways, including those related to synaptogenesis and neuroimmune functions. Overall, our data show that astrocytes are malleable, using context-specific responses that can be dissected molecularly and used for phenotypic benefit in brain disorders.


Assuntos
Astrócitos/metabolismo , Corpo Estriado/metabolismo , Doença de Huntington/metabolismo , Animais , Mineração de Dados , Humanos , Doença de Huntington/genética , Camundongos , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA