Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS Biol ; 22(1): e3002452, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38198502

RESUMO

Humans often face the challenge of making decisions between ambiguous options. The level of ambiguity in decision-making has been linked to activity in the parietal cortex, but its exact computational role remains elusive. To test the hypothesis that the parietal cortex plays a causal role in computing ambiguous probabilities, we conducted consecutive fMRI and TMS-EEG studies. We found that participants assigned unknown probabilities to objective probabilities, elevating the uncertainty of their decisions. Parietal cortex activity correlated with the objective degree of ambiguity and with a process that underestimates the uncertainty during decision-making. Conversely, the midcingulate cortex (MCC) encodes prediction errors and increases its connectivity with the parietal cortex during outcome processing. Disruption of the parietal activity increased the uncertainty evaluation of the options, decreasing cingulate cortex oscillations during outcome evaluation and lateral frontal oscillations related to value ambiguous probability. These results provide evidence for a causal role of the parietal cortex in computing uncertainty during ambiguous decisions made by humans.


Assuntos
Mapeamento Encefálico , Tomada de Decisões , Humanos , Mapeamento Encefálico/métodos , Assunção de Riscos , Incerteza , Lobo Parietal , Imageamento por Ressonância Magnética/métodos
2.
Cereb Cortex ; 34(13): 84-93, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696598

RESUMO

Multimodal integration is crucial for human interaction, in particular for social communication, which relies on integrating information from various sensory modalities. Recently a third visual pathway specialized in social perception was proposed, which includes the right superior temporal sulcus (STS) playing a key role in processing socially relevant cues and high-level social perception. Importantly, it has also recently been proposed that the left STS contributes to audiovisual integration of speech processing. In this article, we propose that brain areas along the right STS that support multimodal integration for social perception and cognition can be considered homologs to those in the left, language-dominant hemisphere, sustaining multimodal integration of speech and semantic concepts fundamental for social communication. Emphasizing the significance of the left STS in multimodal integration and associated processes such as multimodal attention to socially relevant stimuli, we underscore its potential relevance in comprehending neurodevelopmental conditions characterized by challenges in social communication such as autism spectrum disorder (ASD). Further research into this left lateral processing stream holds the promise of enhancing our understanding of social communication in both typical development and ASD, which may lead to more effective interventions that could improve the quality of life for individuals with atypical neurodevelopment.


Assuntos
Cognição Social , Percepção da Fala , Lobo Temporal , Humanos , Lobo Temporal/fisiologia , Lobo Temporal/fisiopatologia , Percepção da Fala/fisiologia , Percepção Social , Transtorno Autístico/fisiopatologia , Transtorno Autístico/psicologia , Lateralidade Funcional/fisiologia
3.
Eur J Neurosci ; 60(3): 4148-4168, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39001625

RESUMO

The conventional medical paradigm often focuses on deficits and impairments, failing to capture the rich tapestry of experiences and abilities inherent in neurodiversity conditions. In this article, we introduce the 3E-Cognition perspective, offering a paradigm shift by emphasizing the dynamic interplay between the brain, body, and environment in shaping cognitive processes. The perspective fosters a more inclusive and supportive understanding of neurodiversity, with potential applications across various domains such as education, workplace, and healthcare. We begin by introducing the 3E-Cognition principles: embodied, environmentally scaffolded, and enactive. Then, we explore how the 3E-Cognition perspective can be applied to create inclusive environments and experiences for neurodiverse individuals. We provide examples in the realms of education, workplace, and healthcare. In all of these domains, spaces, methodologies, epistemologies, and roles that cater to diverse needs and strengths can be designed using the 3E principles. Finally, we discuss the challenges and benefits of implementing the 3E-Cognition perspective. We focus on the need for technological advancements and research in complex real-world scenarios; we suggest mobile brain/body imaging is a possible solution. We furthermore highlight the importance of recognizing and valuing the diverse manners of experiencing and interacting with the world, the promotion of diverse well-being, and the facilitation of innovation and creativity. Thus, we conclude that the 3E-Cognition perspective offers a groundbreaking approach to understanding and supporting neurodiversity: by embracing the inherent interconnectedness of the brain, body, and environment, we can create a more inclusive and supportive world.


Assuntos
Cognição , Neurociências , Humanos , Encéfalo/fisiologia , Cognição/fisiologia , Meio Ambiente , Neurociências/métodos
4.
Front Hum Neurosci ; 18: 1320761, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384334

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental condition that exhibits a widely heterogeneous range of social and cognitive symptoms. This feature has challenged a broad comprehension of this neurodevelopmental disorder and therapeutic efforts to address its difficulties. Current therapeutic strategies have focused primarily on treating behavioral symptoms rather than on brain psychophysiology. During the past years, the emergence of non-invasive brain stimulation techniques (NIBS) has opened alternatives to the design of potential combined treatments focused on the neurophysiopathology of neuropsychiatric disorders like ASD. Such interventions require identifying the key brain mechanisms underlying the symptomatology and cognitive features. Evidence has shown alterations in oscillatory features of the neural ensembles associated with cognitive functions in ASD. In this line, we elaborated a systematic revision of the evidence of alterations in brain oscillations that underlie key cognitive processes that have been shown to be affected in ASD during childhood and adolescence, namely, social cognition, attention, working memory, inhibitory control, and cognitive flexibility. This knowledge could contribute to developing therapies based on NIBS to improve these processes in populations with ASD.

5.
Sci Rep ; 14(1): 19049, 2024 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152190

RESUMO

Patients recovering from COVID-19 commonly exhibit cognitive and brain alterations, yet the specific neuropathological mechanisms and risk factors underlying these alterations remain elusive. Given the significant global incidence of COVID-19, identifying factors that can distinguish individuals at risk of developing brain alterations is crucial for prioritizing follow-up care. Here, we report findings from a sample of patients consisting of 73 adults with a mild to moderate SARS-CoV-2 infection without signs of respiratory failure and 27 with infections attributed to other agents and no history of COVID-19. The participants underwent cognitive screening, a decision-making task, and MRI evaluations. We assessed for the presence of anosmia and the requirement for hospitalization. Groups did not differ in age or cognitive performance. Patients who presented with anosmia exhibited more impulsive alternative changes after a shift in probabilities (r = - 0.26, p = 0.001), while patients who required hospitalization showed more perseverative choices (r = 0.25, p = 0.003). Anosmia correlated with brain measures, including decreased functional activity during the decision-making task, thinning of cortical thickness in parietal regions, and loss of white matter integrity. Hence, anosmia could be a factor to be considered when identifying at-risk populations for follow-up.


Assuntos
Anosmia , Encéfalo , COVID-19 , Imageamento por Ressonância Magnética , SARS-CoV-2 , Humanos , COVID-19/complicações , COVID-19/psicologia , COVID-19/fisiopatologia , COVID-19/diagnóstico por imagem , COVID-19/patologia , Anosmia/etiologia , Anosmia/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia , SARS-CoV-2/isolamento & purificação , Idoso , Tomada de Decisões , Cognição/fisiologia
6.
Front Psychiatry ; 14: 1160209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520238

RESUMO

Introduction: Decision-making is a process that can be strongly affected by social factors. Evidence has shown how people deviate from traditional rational-choice predictions under different levels of social interactions. The emergence of prosocial decision-making, defined as any action that is addressed to benefit another individual even at the expense of personal benefits, has been reported as an example of such social influence. Furthermore, brain evidence has shown the involvement of structures such as the prefrontal cortex, anterior insula, and midcingulate cortex during decision settings in which a decision maker interacts with others under physical pain or distress or while being observed by others. Methods: Using a slightly modified version of the dictator game and EEG recordings, we tested the hypothesis that the inclusion of another person into the decision setting increases prosocial decisions in young adults and that this increase is higher when the other person is associated with others in need. At the brain level, we hypothesized that the increase in prosocial decisions correlates with frontal theta activity. Results and Discussion: The results showed that including another person in the decision, setting increased prosocial behavior only when this presence was associated with someone in need. This effect was associated with an increase in frontocentral theta-oscillatory activity. These results suggest that the presence of someone in need enhances empathy concerns and norm compliance, raising the participants' prosocial decision-making.

7.
Front Psychiatry ; 14: 1259432, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098626

RESUMO

Autism spectrum disorder (ASD) is diagnosed based on socio-communicative difficulties, which are believed to result from deficits in mentalizing, mainly evidenced by alterations in recognizing and responding to the mental states of others. In recent years, efforts have been made to develop mentalization-based treatment (MBT) models for this population. These models focus on enhancing individuals' ability to understand and reflect on their own mental states, as well as those of others. However, MBT approaches for people with ASD are limited by their existing theoretical background, which lacks a strong foundation grounded in neuroscience-based evidence properly integrated with attachment, and mentalizing. These are crucial aspects for understanding psychological processes in autism, and as such, they play a pivotal role in shaping the development of tailored and effective therapeutic strategies for this specific population. In this paper we review evidence related to the neurobiological, interpersonal, and psychological dimensions of autism and their implications for mentalizing processes. We also review previous mentalization-based frameworks on the psychosis continuum to provide a comprehensive understanding of attachment, neurobiology, and mentalization domains in therapeutic approaches for autism. After presenting a synthesis of the literature, we offer a set of clinical strategies for the work with children with autism. Finally, we provide recommendations to advance the field towards more robust models that can serve as a basis for evidence-based therapeutic strategies.

8.
PLoS One ; 17(1): e0262004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35041646

RESUMO

Autism Spectrum Disorder (ASD) is a heterogeneous condition that affects face perception. Evidence shows that there are differences in face perception associated with the processing of low spatial frequency (LSF) and high spatial frequency (HSF) of visual stimuli between non-symptomatic relatives of individuals with autism (broader autism phenotype, BAP) and typically developing individuals. However, the neural mechanisms involved in these differences are not fully understood. Here we tested whether face-sensitive event related potentials could serve as neuronal markers of differential spatial frequency processing, and whether these potentials could differentiate non-symptomatic parents of children with autism (pASD) from parents of typically developing children (pTD). To this end, we performed electroencephalographic recordings of both groups of parents while they had to recognize emotions of face pictures composed of the same or different emotions (happiness or anger) presented in different spatial frequencies. We found no significant differences in the accuracy between groups but lower amplitude modulation in the Late Positive Potential activity in pASD. Source analysis showed a difference in the right posterior part of the superior temporal region that correlated with ASD symptomatology of the child. These results reveal differences in brain processing of recognition of facial emotion in BAP that could be a precursor of ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Córtex Cerebral/fisiopatologia , Eletroencefalografia , Emoções , Potenciais Evocados , Expressão Facial , Reconhecimento Facial , Adulto , Feminino , Humanos , Masculino
9.
Sci Rep ; 12(1): 20562, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446926

RESUMO

How well students learn and perform in academic contexts is a focus of interest for the students, their families, and the entire educational system. Although evidence has shown that several neurobiological factors are involved in scholastic achievement (SA), specific brain measures associated with academic outcomes and whether such associations are independent of other factors remain unclear. This study attempts to identify the relationship between brain structural parameters, and the Chilean national University Selection Test (PSU) results in high school graduates within a multidimensional approach that considers socio-economic, intellectual, nutritional, and demographic variables. To this end, the brain morphology of a sample of 102 students who took the PSU test was estimated using Magnetic Resonance Imaging. Anthropometric parameters, intellectual ability (IA), and socioeconomic status (SES) were also measured. The results revealed that, independently of sex, IA, gray matter volume, right inferior frontal gyrus thickness, and SES were significantly associated with SA. These findings highlight the role of nutrition, health, and socioeconomic variables in academic success.


Assuntos
Encéfalo , Estudantes , Humanos , Universidades , Chile , Encéfalo/diagnóstico por imagem , Instituições Acadêmicas
10.
Cortex ; 113: 210-228, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30677619

RESUMO

A precursor of adult social functioning is joint attention (JA), which is the capacity to share attention on an object with another person. JA precedes the development of the capacity to attribute mental states to others (i.e., mentalization or theory of mind). The neural mechanisms involved in the development of mentalization are not fully understood. Electroencephalographic recordings were made of children while they watched stimuli on a screen and their interaction with the experimenter was assessed. We tested whether neuronal activity preceding JA correlates with mentalization in typically developing (TD) children and whether this activity is impaired in children with autistic spectrum disorder (ASD) who evidence deficits in JA and mentalization skills. Both groups exhibited JA behavior with comparable frequency. TD children displayed a higher amplitude of negative central (Nc) event-related potential preceding JA behavior (∼500 msec after stimuli presentation), than did the ASD group. Previous to JA behavior, TD children demonstrated beta oscillatory activity in the temporoparietal region, while ASD children did not show an increase in beta activity. In both groups, the beta power correlated with mentalization, suggesting that this specific neuronal mechanism is involved in mentalization, which used during social interaction.


Assuntos
Atenção/fisiologia , Transtorno do Espectro Autista/fisiopatologia , Ritmo beta/fisiologia , Encéfalo/fisiopatologia , Mentalização/fisiologia , Teoria da Mente/fisiologia , Transtorno do Espectro Autista/psicologia , Pré-Escolar , Eletroencefalografia , Feminino , Humanos , Masculino
11.
Sci Rep ; 7(1): 14328, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29085047

RESUMO

A dysfunction in the excitatory-inhibitory (E/I) coordination in neuronal assembly has been proposed as a possible neurobiological mechanism of Autistic Spectrum Disorder (ASD). However, the potential impact of this mechanism in cognitive performance is not fully explored. Since the main consequence of E/I dysfunction is an impairment in oscillatory activity and its underlying cognitive computations, we assessed the electroencephalographic activity of ASD and typically developing (TD) subjects during a working-memory task. We found that ASD subjects committed more errors than TD subjects. Moreover, TD subjects demonstrated a parametric modulation in the power of alpha and theta band while ASD subjects did not demonstrate significant modulations. The preceding leads to significant differences between the groups in both the alpha power placed on the occipital cortex and the theta power placed on the left premotor and the right prefrontal cortex. The impaired theta modulation correlated with autistic symptoms. The results indicated that ASD may present an alteration in the recruitment of the oscillatory activity during working-memory, and this alteration could be related to the physiopathology of the disorder.


Assuntos
Ritmo alfa/fisiologia , Transtorno do Espectro Autista/fisiopatologia , Encéfalo/fisiologia , Memória de Curto Prazo , Ritmo Teta/fisiologia , Adolescente , Adulto , Animais , Eletroencefalografia , Feminino , Humanos , Masculino , Transtornos da Memória , Análise e Desempenho de Tarefas , Adulto Jovem
12.
Front Neurosci ; 9: 333, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26483621

RESUMO

Social skills refer to a wide group of abilities that allow us to interact and communicate with others. Children learn how to solve social situations by predicting and understanding other's behaviors. The way in which humans learn to interact successfully with others encompasses a complex interaction between neural, behavioral, and environmental elements. These have a role in the accomplishment of positive developmental outcomes, including peer acceptance, academic achievement, and mental health. All these social abilities depend on widespread brain networks that are recently being studied by neuroscience. In this paper, we will first review the studies on this topic, aiming to clarify the behavioral and neural mechanisms related to the acquisition of social skills during infancy and their appearance in time. Second, we will briefly describe how developmental diseases like Autism Spectrum Disorders (ASD) can inform about the neurobiological mechanisms of social skills. We finally sketch a general framework for the elaboration of cognitive models in order to facilitate the comprehension of human social development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA