Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(15): e112684, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37303233

RESUMO

Upon DNA damage, cells activate the DNA damage response (DDR) to coordinate proliferation and DNA repair. Dietary, metabolic, and environmental inputs are emerging as modulators of how DNA surveillance and repair take place. Lipids hold potential to convey these cues, although little is known about how. We observed that lipid droplet (LD) number specifically increased in response to DNA breaks. Using Saccharomyces cerevisiae and cultured human cells, we show that the selective storage of sterols into these LD concomitantly stabilizes phosphatidylinositol-4-phosphate (PI(4)P) at the Golgi, where it binds the DDR kinase ATM. In turn, this titration attenuates the initial nuclear ATM-driven response to DNA breaks, thus allowing processive repair. Furthermore, manipulating this loop impacts the kinetics of DNA damage signaling and repair in a predictable manner. Thus, our findings have major implications for tackling genetic instability pathologies through dietary and pharmacological interventions.


Assuntos
Proteínas Serina-Treonina Quinases , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Esteróis/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Dano ao DNA , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
2.
Biol Cell ; 114(8): 211-219, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35524759

RESUMO

BACKGROUND: Both phospholipid synthesis and the detection of DNA damage are coupled to cell cycle progression, yet whether these two aspects crosstalk to each other remains unassessed. We postulate here that shortage of phospholipids, which negatively affects proliferation, may reduce the need for checkpoint activation in response to DNA damage. RESULTS: To test this hypothesis, we explore here the DNA Damage Response activation in response to seven different genotoxins, in three distinct cell types, and manipulate phospholipid synthesis both pharmacologically and genetically. This allows us to point at the DNA damage response kinase ATR as responsible for the coordination between phospholipid levels and DNA damage sensing. CONCLUSIONS AND SIGNIFICANCE: ATR could combine its ability to sense DNA damage and phospholipid profiles in order to finetune the response to DNA lesions depending on metabolic cues. Further, our analysis reveals the functional significance of this crosstalk to keep genome homeostasis.


Assuntos
Fosfolipídeos , Proteínas Quinases , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
3.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299079

RESUMO

In order to tackle the study of DNA repair pathways, the physical and chemical agents creating DNA damage, the genotoxins, are frequently employed. Despite their utility, their effects are rarely restricted to DNA, and therefore simultaneously harm other cell biomolecules. Methyl methanesulfonate (MMS) is an alkylating agent that acts on DNA by preferentially methylating guanine and adenine bases. It is broadly used both in basic genome stability research and as a model for mechanistic studies to understand how alkylating agents work, such as those used in chemotherapy. Nevertheless, MMS exerts additional actions, such as oxidation and acetylation of proteins. In this work, we introduce the important notion that MMS also triggers a lipid stress that stems from and affects the inner nuclear membrane. The inner nuclear membrane plays an essential role in virtually all genome stability maintenance pathways. Thus, we want to raise awareness that the relative contribution of lipid and genotoxic stresses when using MMS may be difficult to dissect and will matter in the conclusions drawn from those studies.


Assuntos
Antineoplásicos Alquilantes/efeitos adversos , Dano ao DNA , Lipídeos/análise , Metanossulfonato de Metila/efeitos adversos , Mutagênicos/efeitos adversos , Membrana Nuclear/patologia , Epitélio Pigmentado da Retina/patologia , Reparo do DNA , Células Hep G2 , Humanos , Membrana Nuclear/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos
4.
Life Sci Alliance ; 5(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35568434

RESUMO

Membrane contact sites are functional nodes at which organelles reorganize metabolic pathways and adapt to changing cues. In Saccharomyces cerevisiae, the nuclear envelope subdomain surrounding the nucleolus, very plastic and prone to expansion, can establish contacts with the vacuole and be remodeled in response to various metabolic stresses. While using genotoxins with unrelated purposes, we serendipitously discovered a fully new remodeling event at this nuclear subdomain: the nuclear envelope partitions into its regular contact with the vacuole and a dramatic internalization within the nucleus. This leads to the nuclear engulfment of a globular, cytoplasmic portion. In spite of how we discovered it, the phenomenon is likely DNA damage-independent. We define lipids supporting negative curvature, such as phosphatidic acid and sterols, as bona fide drivers of this event. Mechanistically, we suggest that the engulfment of the cytoplasm triggers a suction phenomenon that enhances the docking of proton pump-containing vesicles with the vacuolar membrane, which we show matches a boost in autophagy. Thus, our findings unveil an unprecedented remodeling of the nucleolus-surrounding membranes with impact on metabolic adaptation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Autofagia/fisiologia , Citoplasma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
5.
Cell Rep ; 25(9): 2484-2496.e9, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30485814

RESUMO

Although accumulating data indicate that increased α-synuclein expression is crucial for Parkinson disease (PD), mechanisms regulating the transcription of its gene, SNCA, are largely unknown. Here, we describe a pathway regulating α-synuclein expression. Our data show that ZSCAN21 stimulates SNCA transcription in neuronal cells and that TRIM41 is an E3 ubiquitin ligase for ZSCAN21. In contrast, TRIM17 decreases the TRIM41-mediated degradation of ZSCAN21. Silencing of ZSCAN21 and TRIM17 consistently reduces SNCA expression, whereas TRIM41 knockdown increases it. The mRNA levels of TRIM17, ZSCAN21, and SNCA are simultaneously increased in the midbrains of mice following MPTP treatment. In addition, rare genetic variants in ZSCAN21, TRIM17, and TRIM41 genes occur in patients with familial forms of PD. Expression of variants in ZSCAN21 and TRIM41 genes results in the stabilization of the ZSCAN21 protein. Our data thus suggest that deregulation of the TRIM17/TRIM41/ZSCAN21 pathway may be involved in the pathogenesis of PD.


Assuntos
Proteínas de Transporte/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like/química , Masculino , Camundongos Endogâmicos C57BL , Mutação/genética , Proteínas Nucleares/química , Linhagem , Ligação Proteica , Proteólise , Transcrição Gênica , Proteínas com Motivo Tripartido , Ubiquitinação , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA