Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474014

RESUMO

The DNA damage response (DDR) system is a complicated network of signaling pathways that detects and repairs DNA damage or induces apoptosis. Critical regulators of the DDR network include the DNA damage kinases ataxia telangiectasia mutated Rad3-related kinase (ATR) and ataxia-telangiectasia mutated (ATM). The ATR pathway coordinates processes such as replication stress response, stabilization of replication forks, cell cycle arrest, and DNA repair. ATR inhibition disrupts these functions, causing a reduction of DNA repair, accumulation of DNA damage, replication fork collapse, inappropriate mitotic entry, and mitotic catastrophe. Recent data have shown that the inhibition of ATR can lead to synthetic lethality in ATM-deficient malignancies. In addition, ATR inhibition plays a significant role in the activation of the immune system by increasing the tumor mutational burden and neoantigen load as well as by triggering the accumulation of cytosolic DNA and subsequently inducing the cGAS-STING pathway and the type I IFN response. Taken together, we review stimulating data showing that ATR kinase inhibition can alter the DDR network, the immune system, and their interplay and, therefore, potentially provide a novel strategy to improve the efficacy of antitumor therapy, using ATR inhibitors as monotherapy or in combination with genotoxic drugs and/or immunomodulators.


Assuntos
Reparo do DNA , Neoplasias , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Resultado do Tratamento
2.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000097

RESUMO

The DNA damage response (DDR) network and the mitogen-activated protein kinase (MAPK) signaling pathway are crucial mechanisms for the survival of all living beings. An accumulating body of evidence suggests that there is crosstalk between these two systems, thus favoring the appropriate functioning of multi-cellular organisms. On the other hand, aberrations within these mechanisms are thought to play a vital role in the onset and progression of several diseases, including cancer, as well as in the emergence of drug resistance. Here, we provide an overview of the current knowledge regarding alterations in the DDR machinery and the MAPK signaling pathway as well as abnormalities in the DDR/MAPK functional crosstalk in multiple myeloma, the second most common hematologic malignancy. We also present the latest advances in the development of anti-myeloma drugs targeting crucial DDR- and MAPK-associated molecular components. These data could potentially be exploited to discover new therapeutic targets and effective biomarkers as well as for the design of novel clinical trials. Interestingly, they might provide a new approach to increase the efficacy of anti-myeloma therapy by combining drugs targeting the DDR network and the MAPK signaling pathway.


Assuntos
Dano ao DNA , Sistema de Sinalização das MAP Quinases , Mieloma Múltiplo , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Humanos , Reparo do DNA , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Animais
3.
Clin Immunol ; 254: 109693, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37454866

RESUMO

Antiphospholipid syndrome (APS) is a rare autoimmune disorder with complex pathogenesis. Studies have shown that oxidative stress may contribute to APS pathophysiology. In peripheral blood mononuclear cells (PBMCs) from thrombotic Primary APS (thrPAPS) patients and age/sex-matched healthy controls (HC), as well as a control group of asymptomatic antiphospholipid antibody (aPL) positive individuals without APS (aPL+/non-APS), we examined oxidative stress, abasic (apurinic/apyrimidinic) sites, and DNA damage response (DDR)-associated parameters, including endogenous DNA damage (single- and double-strand breaks) and DNA repair mechanisms, namely nucleotide excision repair (NER) and double-strand breaks repair (DSB/R). We found that thrPAPS patients exhibited significantly higher levels of endogenous DNA damage, increased oxidative stress and abasic sites, as well as lower NER and DSB/R capacities versus HC (all P < 0.001) and versus aPL+/non-APS subjects (all P < 0.05). Our findings demonstrate that oxidative stress and decreased DNA repair mechanisms contribute to the accumulation of endogenous DNA damage in PBMCs from thrPAPS patients and, if further validated, may be exploited as therapeutic targets and potential biomarkers.


Assuntos
Síndrome Antifosfolipídica , Trombose , Humanos , Leucócitos Mononucleares , Reparo do DNA , Estresse Oxidativo , Trombose/etiologia , Dano ao DNA
4.
Clin Immunol ; 246: 109189, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400336

RESUMO

Behcet's disease (BD) is a chronic, relapsing systemic vasculitis of unknown etiology. Since the DNA repair enzyme NEIL1 has been identified as one of the two genetic risk factors for BD by whole exome study, we examined the potential involvement of the DNA damage response (DDR) network in BD. Peripheral blood mononuclear cells from 26 patients and 26 age-/sex-matched healthy controls were studied. Endogenous DNA damage levels were increased in active BD patients compared to controls or patients in remission. In parallel, BD patients had defective nucleotide excision repair capacity. RNA-sequencing revealed reduced expression of NEIL1 that negatively correlated with DNA damage accumulation. On the other hand, expression of genes involved in senescence and senescence-associated secretory phenotype positively correlated with individual endogenous DNA damage levels. We conclude that deregulated DDR contributes to the proinflammatory environment in BD.


Assuntos
Síndrome de Behçet , DNA Glicosilases , Humanos , Síndrome de Behçet/complicações , Leucócitos Mononucleares , Estudos de Casos e Controles
5.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108309

RESUMO

Aging is characterized by the progressive deregulation of homeostatic mechanisms causing the accumulation of macromolecular damage, including DNA damage, progressive decline in organ function and chronic diseases. Since several features of the aging phenotype are closely related to defects in the DNA damage response (DDR) network, we have herein investigated the relationship between chronological age and DDR signals in peripheral blood mononuclear cells (PBMCs) from healthy individuals. DDR-associated parameters, including endogenous DNA damage (single-strand breaks and double-strand breaks (DSBs) measured by the alkaline comet assay (Olive Tail Moment (OTM); DSBs-only by γH2AX immunofluorescence staining), DSBs repair capacity, oxidative stress, and apurinic/apyrimidinic sites were evaluated in PBMCs of 243 individuals aged 18-75 years, free of any major comorbidity. While OTM values showed marginal correlation with age until 50 years (rs = 0.41, p = 0.11), a linear relationship was observed after 50 years (r = 0.95, p < 0.001). Moreover, individuals older than 50 years showed increased endogenous DSBs levels (γH2Ax), higher oxidative stress, augmented apurinic/apyrimidinic sites and decreased DSBs repair capacity than those with age lower than 50 years (all p < 0.001). Results were reproduced when we examined men and women separately. Prospective studies confirming the value of DNA damage accumulation as a biomarker of aging, as well as the presence of a relevant agethreshold, are warranted.


Assuntos
Quebras de DNA de Cadeia Dupla , Leucócitos Mononucleares , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Leucócitos Mononucleares/fisiologia , Estudos Prospectivos , Dano ao DNA , Envelhecimento/genética , Reparo do DNA
6.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555311

RESUMO

Histone deacetylase inhibitors show synergy with several genotoxic drugs. Herein, we investigated the biological impact of the combined treatment of panobinostat and melphalan in multiple myeloma (MM). DNA damage response (DDR) parameters and the expression of DDR-associated genes were analyzed in bone marrow plasma cells (BMPCs) and peripheral blood mononuclear cells (PBMCs) from 26 newly diagnosed MM patients. PBMCs from 25 healthy controls (HC) were examined in parallel. Compared with the ex vivo melphalan-only treatment, combined treatment with panobinostat and melphalan significantly reduced the efficiency of nucleotide excision repair (NER) and double-strand-break repair (DSB/R), enhanced the accumulation of DNA lesions (monoadducts and DSBs), and increased the apoptosis rate only in patients' BMPCs (all p < 0.001); marginal changes were observed in PBMCs from the same patients or HC. Accordingly, panobinostat pre-treatment decreased the expression levels of critical NER (DDB2, XPC) and DSB/R (MRE11A, PRKDC/DNAPKc, RAD50, XRCC6/Ku70) genes only in patients' BMPCs; no significant changes were observed in PBMCs from patients or HC. Together, our findings demonstrate that panobinostat significantly increased the melphalan sensitivity of malignant BMPCs without increasing the melphalan sensitivity of PBMCs from the same patients, thus paving the way for combination therapies in MM with improved anti-myeloma efficacy and lower side effects.


Assuntos
Melfalan , Mieloma Múltiplo , Humanos , Melfalan/uso terapêutico , Melfalan/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Panobinostat/farmacologia , Leucócitos Mononucleares/metabolismo , Reparo do DNA
7.
Clin Immunol ; 229: 108765, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34089859

RESUMO

Whether and how an acute immune challenge may affect DNA Damage Response (DDR) is unknown. By studying vaccinations against Influenza and SARS-CoV-2 (mRNA-based) we found acute increases of type-I interferon-inducible gene expression, oxidative stress and DNA damage accumulation in blood mononuclear cells of 9 healthy controls, coupled with effective anti-SARS-CoV-2 neutralizing antibody production in all. Increased DNA damage after SARS-CoV-2 vaccine, partly due to increased oxidative stress, was transient, whereas the inherent DNA repair capacity was found intact. In contrast, in 26 patients with Systemic Lupus Erythematosus, who served as controls in the context of chronic immune activation, we validated increased DNA damage accumulation, increased type-I interferon-inducible gene expression and induction of oxidative stress, however aberrant DDR was associated with deficiencies in nucleotide excision repair pathways. These results indicate that acute immune challenge can indeed activate DDR pathways, whereas, contrary to chronic immune challenge, successful repair of DNA lesions occurs.


Assuntos
Anticorpos Neutralizantes/fisiologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Dano ao DNA , Lúpus Eritematoso Sistêmico/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , COVID-19/patologia , Estudos de Casos e Controles , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Interferon Tipo I/metabolismo , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Vacinas Sintéticas/imunologia , Adulto Jovem , Vacinas de mRNA
8.
J Autoimmun ; 125: 102755, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34857436

RESUMO

OBJECTIVE: Adenosine deaminase acting on RNA-1 (ADAR1) enzyme is a type I interferon (IFN)-stimulated gene (ISG) catalyzing the deamination of adenosine-to-inosine, a process called A-to-I RNA editing. A-to-I RNA editing takes place mainly in Alu elements comprising a primate-specific level of post-transcriptional gene regulation. Whether RNA editing is involved in type I IFN responses in systemic sclerosis (SSc) patients remains unknown. METHODS: ISG expression was quantified in skin biopsies and peripheral blood mononuclear cells derived from SSc patients and healthy subjects. A-to-I RNA editing was examined in the ADAR1-target cathepsin S (CTSS) by an RNA editing assay. The effect of ADAR1 on interferon-α/ß-induced CTSS expression was assessed in human endothelial cells in vitro. RESULTS: Increased expression levels of the RNA editor ADAR1, and specifically the long ADAR1p150 isoform, and its target CTSS are strongly associated with type I IFN signature in skin biopsies and peripheral blood derived from SSc patients. Notably, IFN-α/ß-treated human endothelial cells show 8-10-fold increased ADAR1p150 and 23-35-fold increased CTSS expression, while silencing of ADAR1 reduces CTSS expression by 60-70%. In SSc patients, increased RNA editing rate of individual adenosines located in CTSS 3' UTR Alu elements is associated with higher CTSS expression (r = 0.36-0.6, P < 0.05 for all). Similar findings were obtained in subjects with activated type I IFN responses including SLE patients or healthy subjects after influenza vaccination. CONCLUSION: ADAR1p150-mediated A-to-I RNA editing is critically involved in type I IFN responses highlighting the importance of post-transcriptional regulation of proinflammatory gene expression in systemic autoimmunity, including SSc.


Assuntos
Interferon Tipo I , Escleroderma Sistêmico , Adenosina/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Células Endoteliais/metabolismo , Humanos , Inosina/genética , Interferon Tipo I/metabolismo , Leucócitos Mononucleares/metabolismo , RNA , Edição de RNA , Proteínas de Ligação a RNA/genética , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/metabolismo
9.
Clin Immunol ; 203: 28-36, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30930144

RESUMO

We investigated the DNA damage response and repair network in 18 patients with active rheumatoid arthritis and tested the hypothesis that treatment influences this network. A 3-fold increase of endogenous DNA damage (single- and double-strand breaks) was detected in patient-derived peripheral blood mononuclear cells than controls (alkaline comet assay; mean ±â€¯SD Olive Tail Moment of 11.8 ±â€¯7.3 versus 4.3 ±â€¯2.2, p < .001). Patients exhibited significantly higher formation of DNA damage (oxidative stress and abasic sites), deficient global genome repair and more condensed chromatin structure than controls. Twelve weeks following treatment, chromatin structure loosened, global genome repair capacity was restored, oxidative stress and abasic sites decreased and levels of endogenous DNA damage reached control values in all 8 patients examined. We conclude that deregulated chromatin organization, deficient DNA repair capacity and augmented formation of DNA damage, which are reversible after treatment, contribute to the accumulation of endogenous DNA damage in rheumatoid arthritis.


Assuntos
Artrite Reumatoide/genética , Cromatina/genética , Leucócitos Mononucleares/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Montagem e Desmontagem da Cromatina/genética , Ensaio Cometa , Dano ao DNA , Reparo do DNA , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/genética
10.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861764

RESUMO

The DNA damage response and repair (DDR/R) network, a sum of hierarchically structured signaling pathways that recognize and repair DNA damage, and the immune response to endogenous and/or exogenous threats, act synergistically to enhance cellular defense. On the other hand, a deregulated interplay between these systems underlines inflammatory diseases including malignancies and chronic systemic autoimmune diseases, such as systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Patients with these diseases are characterized by aberrant immune response to self-antigens with widespread production of autoantibodies and multiple-tissue injury, as well as by the presence of increased oxidative stress. Recent data demonstrate accumulation of endogenous DNA damage in peripheral blood mononuclear cells from these patients, which is related to (a) augmented DNA damage formation, at least partly due to the induction of oxidative stress, and (b) epigenetically regulated functional abnormalities of fundamental DNA repair mechanisms. Because endogenous DNA damage accumulation has serious consequences for cellular health, including genomic instability and enhancement of an aberrant immune response, these results can be exploited for understanding pathogenesis and progression of systemic autoimmune diseases, as well as for the development of new treatments.


Assuntos
Doenças Autoimunes/genética , Autoimunidade , Reparo do DNA , Estresse Oxidativo , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Dano ao DNA , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/metabolismo
11.
Blood ; 128(9): 1214-25, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27443291

RESUMO

DNA repair activity of malignant cells seems to influence therapeutic outcome and patients' survival. Herein, we investigated the mechanistic basis for the link between DNA repair efficiency and response to antimyeloma therapy. Nucleotide excision repair (NER), interstrand cross-links repair (ICL/R), double-strand breaks repair (DSB/R), and chromatin structure were evaluated in multiple myeloma (MM) cell lines (melphalan-sensitive RPMI8226; melphalan-resistant LR5) and bone marrow plasma cells (BMPCs) from MM patients who responded (n = 17) or did not respond (n = 9) to subsequent melphalan therapy. The effect of DSB/R inhibition was also evaluated. Responders' BMPCs showed slower rates of NER and DSB/R (P <0022), similar rates of ICL/R, and more condensed chromatin structure compared with nonresponders. Moreover, apoptosis rates of BMPCs were inversely correlated with individual DNA repair efficiency and were higher in responders' cells compared with those of nonresponders (P = .0011). Similarly, RPMI8226 cells showed slower rates of NER and DSB/R, comparable rates of ICL/R, more condensed chromatin structure, and higher sensitivity than LR5 cells. Interestingly, cotreatment of BMPCs or cell lines with DSB/R inhibitors significantly reduced the rates of DSB/R and increased melphalan sensitivity of the cells, with the nonhomologous end-joining inhibitor SCR7 showing the strongest effect. Together, responders' BMPCs are characterized by lower efficiencies of NER and DSB/R mechanisms, resulting in higher accumulation of the extremely cytotoxic ICLs and DSBs lesions, which in turn triggers the induction of the apoptotic pathway. Moreover, the enhancement of melphalan cytotoxicity by DSB/R inhibition offers a promising strategy toward improvement of existing antimyeloma regimens.


Assuntos
Células da Medula Óssea/imunologia , Reparo do DNA/imunologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Melfalan/farmacologia , Mieloma Múltiplo/imunologia , Plasmócitos/imunologia , Adulto , Idoso , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Células da Medula Óssea/patologia , Linhagem Celular Tumoral , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/patologia , Plasmócitos/patologia , Taxa de Sobrevida
12.
J Gerontol A Biol Sci Med Sci ; 78(4): 603-610, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36209410

RESUMO

Defects in the DNA damage response and repair (DDR/R) network accumulate during the aging process. Physical frailty, a state of reduced physiological function and decreased resilience to biological stressors, is also exacerbated by aging, but its link with DDR/R aberrations beyond the effect of age and comorbidities is unclear. Fifty-three community-dwelling older adults, aged 65-102 years, who underwent frailty classification according to the Rockwood Clinical Frailty Scale (CFS), and 51 healthy adults younger than 45 years were examined in parallel. The following DDR/R parameters were determined in their peripheral blood mononuclear cells (PBMCs): (a) oxidative stress and abasic (apurinic/apyrimidinic; AP) sites, (b) endogenous DNA damage (alkaline comet assay olive tail moment [OTM] indicative of DNA single-strand breaks [SSBs] and double-strand breaks [DSBs] and γH2AX levels by immunofluorescence [DSBs only]), (c) capacity of the 2 main DNA repair mechanisms (DSB repair and nucleotide excision repair). Older individual-derived PBMCs displayed reduced-to-oxidized glutathione ratios indicative of increased levels of oxidative stress and increased AP sites, as well as increased accumulation of endogenous DNA damage (OTM and γH2AX) and defective DSB-repair capacity, compared with younger controls. These DDR/R aberrations were more pronounced in frail versus nonfrail older adults. Notably, oxidative stress, AP sites, DSBs, and DSB-repair capacity were associated with individual CFS levels after adjusting for chronological age, sex, Charlson Comorbidity Index, and polypharmacy. Geriatric frailty is independently associated with increased DNA damage formation and reduced DSB-R capacity, supporting further research into these measures as potential frailty biomarkers.


Assuntos
Quebras de DNA de Cadeia Dupla , Fragilidade , Humanos , Idoso , Leucócitos Mononucleares , Fragilidade/genética , Reparo do DNA/genética , Estresse Oxidativo/genética , Dano ao DNA , DNA/genética , Comorbidade
13.
Front Immunol ; 14: 1274060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38124740

RESUMO

Objectives: The abnormal DNA damage response is associated with upregulation of the type-1 interferon (IFN-I) pathway in certain rheumatic diseases. We investigated whether such aberrant mechanisms operate in psoriatic arthritis (PsA). Methods: DNA damage levels were measured by alkaline comet assay in peripheral blood mononuclear cells from 52 PsA patients and age-sex-matched healthy individuals. RNA expression of IFIT1, MX1 and IFI44, which are selectively induced by IFN-I, was quantitated by real-time polymerase chain reaction and their composite normalized expression resulted in IFN-I score calculation. RNA expression of IL1ß, IL6, TNF, IL17A and IL23A was also assessed in PsA and control subgroups. Results: In PsA, DNA damage accumulation was increased by almost two-fold compared to healthy individuals (olive tail moment arbitrary units, mean ± SD; 9.42 ± 2.71 vs 4.88 ± 1.98, p<0.0001). DNA damage levels significantly correlated with serum C-Reactive-protein and IL6 RNA expression in PBMCs. Despite increased DNA damage, the IFN-I score was strikingly lower in PsA patients compared to controls (-0.49 ± 6.99 vs 4.24 ± 4.26; p<0.0001). No correlation was found between IFN-I pathway downregulation and DNA damage. However, the IFN-I score in a PsA subgroup was lower in those patients with higher IL1ß expression, as well as in those with higher TNF/IL23A PBMCs expression. Conclusion: DNA damage in PsA correlates with measures of inflammation but is not associated with the IFN-I pathway induction. The unexpected IFN-I downregulation, albeit reminiscent to findings in experimental models of spondyloarthritis, may be implicated in PsA pathogenesis and explained by operation of other cytokines.


Assuntos
Artrite Psoriásica , Interferon Tipo I , Humanos , Artrite Psoriásica/patologia , Interferon Tipo I/metabolismo , Leucócitos Mononucleares/metabolismo , Interleucina-6/metabolismo , Dano ao DNA , RNA/metabolismo
14.
ChemMedChem ; 18(22): e202300322, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37792577

RESUMO

The oncogenic BRAFV600E kinase leads to abnormal activation of the MAPK signaling pathway and thus, uncontrolled cellular proliferation and cancer development. Based on our previous virtual screening studies which issued 2-acetamido-1,3 benzothiazole-6-carboxamide scaffold as active pharmacophore displaying selectivity against the mutated BRAF, eleven new substituted benzothiazole derivatives were designed and synthesized by coupling of 2-acetamidobenzo[d]thiazole-6-carboxylic acid with the appropriate amines in an effort to provide even more efficient inhibitors and tackle drug resistance often developed during cancer treatment. All derived compounds bore the benzothiazole scaffold substituted at position-2 by an acetamido moiety and at position-6 by a carboxamide functionality, the NH moiety of which was further linked through an alkylene linker to a sulfonamido (or amino) aryl (or alkyl) functionality or a phenylene linker to a sulfonamido aromatic (or non-aromatic) terminal pharmacophore in the order -C6 H4 -NHSO2 -R or reversely -C6 H4 -SO2 N(H)-R. These analogs were subsequently biologically evaluated as potential BRAFV600E inhibitors and antiproliferative agents in several colorectal cancer and melanoma cell lines. In all assays applied, one analog, namely 2-acetamido-N-[3-(pyridin-2-ylamino)propyl]benzo[d]thiazole-6-carboxamide (22), provided promising results in view of its use in drug development.


Assuntos
Antineoplásicos , Benzotiazóis , Linhagem Celular Tumoral , Benzotiazóis/farmacologia , Antineoplásicos/farmacologia , Proliferação de Células , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais
15.
Br J Clin Pharmacol ; 74(5): 842-53, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22432918

RESUMO

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT: Previous studies have indicated that the levels of DNA damage induced in peripheral blood mononuclear cells by the alkylating drugs melphalan, cisplatin and carboplatin can serve as useful biomarkers predictive of the therapeutic response of cancer patients to these drugs. WHAT THIS STUDY ADDS: In the present study we developed a quantitative PCR-based assay, for the measurement of DNA damage. The advantages of this methodology are based on: its far greater sensitivity (about 250 times) than the traditional Southern blot-based method (the detection limit is ~10-20 lesions/10(6) nucleotides from the equivalent DNA of ~8000 cells); its simplicity and speed (results obtained within ~8h); its excellent reproducibility, with a coefficient of variance of 10-15% for different DNA preparations from similarly treated cells; its requirement for only minute amounts of material, and; the avoidance of radioisotope labeling. Moreover, emphasis was given to translate basic research findings into clinical practice through the validation of this assay for prediction of clinical outcome in multiple myeloma patients. AIM: In order to develop and validate a simple, sensitive and rapid method for the quantitation of alkylating drug-induced DNA damage. METHODS: HepG2 cells and blood samples were treated with alkylating drugs (melphalan, cisplatin, carboplatin). Gene-specific damage was examined using Southern blot and a multiplex long quantitative PCR (QPCR) carried out in a 7 kb fragment (part of the p53 gene) and a 0.5 kb fragment (part of the IFN-ß1 sequence; internal standard). RESULTS: The extent of PCR amplification of a p53 fragment was inversely proportional to the treatment concentrations of all anticancer drugs examined, indicating a dose-related inhibition by the DNA adducts formed. Parallel analysis of the same samples using both Southern blot and QPCR showed that the DNA adducts measured by QPCR corresponded to the interstrand cross-links in the case of melphalan, and to total drug-induced lesions in the case of the platinum drugs. The detection limit was ~10-20 lesions/10(6) nucleotides using DNA from ~8000 cells. The method is about 250 times more sensitive than the Southern blot-based method and the reproducibility is excellent, with an intraday coefficient of variance (CV) of 5-9% and an interday CV of 4-12%. Application of the QPCR assay to ex vivo melphalan-treated peripheral blood mononuclear cells from multiple myeloma patients, showed that the positive predictive value of this assay for clinical response to melphalan therapy was 92.9%. CONCLUSION: The PCR-based assay developed in this study can be used for the selection of cancer patients more likely to benefit from therapeutic treatment with alkylating drugs.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Dano ao DNA/efeitos dos fármacos , Reação em Cadeia da Polimerase Multiplex/métodos , Seleção de Pacientes , Adulto , Southern Blotting , Carboplatina/farmacologia , Cisplatino/farmacologia , Adutos de DNA/farmacologia , Feminino , Genes p53/genética , Células Hep G2 , Humanos , Interferon beta/genética , Leucócitos Mononucleares/metabolismo , Limite de Detecção , Masculino , Melfalan/farmacologia , Pessoa de Meia-Idade , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Resultado do Tratamento
16.
Biomedicines ; 10(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35740268

RESUMO

The deregulated DNA damage response (DDR) network is associated with the onset and progression of cancer. Herein, we searched for DDR defects in peripheral blood mononuclear cells (PBMCs) from lung cancer patients, and we evaluated factors leading to the augmented formation of DNA damage and/or its delayed/decreased removal. In PBMCs from 20 lung cancer patients at diagnosis and 20 healthy controls (HC), we analyzed oxidative stress and DDR-related parameters, including critical DNA repair mechanisms and apoptosis rates. Cancer patients showed higher levels of endogenous DNA damage than HC (p < 0.001), indicating accumulation of DNA damage in the absence of known exogenous genotoxic insults. Higher levels of oxidative stress and apurinic/apyrimidinic sites were observed in patients rather than HC (all p < 0.001), suggesting that increased endogenous DNA damage may emerge, at least in part, from these intracellular factors. Lower nucleotide excision repair and double-strand break repair capacities were found in patients rather than HC (all p < 0.001), suggesting that the accumulation of DNA damage can also be mediated by defective DNA repair mechanisms. Interestingly, reduced apoptosis rates were obtained in cancer patients compared with HC (p < 0.001). Consequently, the expression of critical DDR-associated genes was found deregulated in cancer patients. Together, oxidative stress and DDR-related aberrations contribute to the accumulation of endogenous DNA damage in PBMCs from lung cancer patients and can potentially be exploited as novel therapeutic targets and non-invasive biomarkers.

17.
Toxics ; 10(1)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35051069

RESUMO

Electrophilic diol epoxide metabolites are involved in the carcinogenicity of benzo[a]pyrene, one of the widely studied polycyclic aromatic hydrocarbons (PAHs). The exposure of humans to this PAH can be assessed by measuring stable blood protein adducts, such as to histidine and lysine in serum albumin, from their reactive metabolites. In this respect, measurement of the adducts originating from the genotoxic (+)-anti-benzo[a]pyrene diol epoxide is of interest. However, these are difficult to measure at such low levels as are expected in humans generally exposed to benzo[a]pyrene from air pollution and the diet. The analytical methods detecting PAH-biomarkers still suffer from low selectivity and/or detectability to enable generation of data for calculation of in vivo doses of specific stereoisomers, for evaluation of risk factors and assessing risk from exposures to PAH. Here, we suggest an analytical methodology based on high-pressure liquid chromatography (HPLC) coupled to high-resolution tandem mass spectrometry (MS) to lower the detection limits as well as to increase the selectivity with improvements in both chromatographic separation and mass determination. Method development was performed using serum albumin alkylated in vitro by benzo[a]pyrene diol epoxide isomers. The (+)-anti-benzo[a]pyrene diol epoxide adducts could be chromatographically resolved by using an HPLC column with a pentafluorophenyl stationary phase. Interferences were further diminished by the high mass accuracy and resolving power of Orbitrap MS. The achieved method detection limit for the (+)-anti-benzo[a]pyrene diol epoxide adduct to histidine was approximately 4 amol/mg serum albumin. This adduct as well as the adducts to histidine from (-)-anti- and (+/-)-syn-benzo[a]pyrene diol epoxide were quantified in the samples from benzo[a]pyrene-exposed mice. Corresponding adducts to lysine were also quantified. In human serum albumin, the anti-benzo[a]pyrene diol epoxide adducts to histidine were detected in only two out of twelve samples and at a level of approximately 0.1 fmol/mg.

18.
Life (Basel) ; 12(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35330181

RESUMO

Microvascular wall abnormalities demonstrated by nailfold capillaroscopy in systemic sclerosis (SSc) may result in microhemorrhagic deposition of erythrocyte-derived iron. Such abnormalities precede fibrosis, which is orchestrated by myofibroblasts. Iron induces endothelial-to-mesenchymal transition in vitro, which is reversed by reactive oxygen species (ROS) scavengers. The conversion of quiescent fibroblasts into profibrotic myofibroblasts has also been associated with ROS-mediated activation of TGF-ß1. Given that iron overload predisposes to ROS formation, we hypothesized that the uptake of erythrocyte-derived iron by resident cells promotes fibrosis. Firstly, we show that iron induces oxidative stress in skin-derived and synovial fibroblasts in vitro, as well as in blood mononuclear cells ex vivo. The biological relevance of increased oxidative stress was confirmed by showing the concomitant induction of DNA damage in these cell types. Similar results were obtained in vivo, following intravenous iron administration. Secondly, using magnetic resonance imaging we show an increased iron deposition in the fingers of a patient with early SSc and nailfold microhemorrhages. While a systematic magnetic resonance study to examine tissue iron levels in SSc, including internal organs, is underway, herein we propose that iron may be a pathogenetic link between microvasculopathy and fibrosis and an additional mechanism responsible for increased oxidative stress in SSc.

19.
Vaccines (Basel) ; 10(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36298629

RESUMO

COVID-19 is an infectious disease caused by the SARS-CoV-2 coronavirus and characterized by an extremely variable disease course, ranging from asymptomatic cases to severe illness. Although all individuals may be infected by SARS-CoV-2, some people, including those of older age and/or with certain health conditions, including cardiovascular disease, diabetes, cancer, and chronic respiratory disease, are at higher risk of getting seriously ill. For cancer patients, there are both direct consequences of the COVID-19 pandemic, including that they are more likely to be infected by SARS-CoV-2 and more prone to develop severe complications, as well as indirect effects, such as delayed cancer diagnosis or treatment and deferred tests. Accumulating data suggest that aberrant SARS-CoV-2 immune response can be attributed to impaired interferon signaling, hyper-inflammation, and delayed adaptive immune responses. Interestingly, the SARS-CoV-2-induced immunological abnormalities, DNA damage induction, generation of micronuclei, and the virus-induced telomere shortening can abnormally activate the DNA damage response (DDR) network that plays a critical role in genome diversity and stability. We present a review of the current literature regarding the molecular mechanisms that are implicated in the abnormal interplay of the immune system and the DDR network, possibly contributing to some of the COVID-19 complications.

20.
Biochim Biophys Acta Mol Basis Dis ; 1868(6): 166393, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35314351

RESUMO

Immune senescence in the elderly has been associated with chronic oxidative stress and DNA damage accumulation. Herein we tested the hypothesis that increased endogenous DNA damage and oxidative stress in peripheral blood mononuclear cells of older adults associate with diminished humoral immune response to SARS-CoV-2 vaccination. Increased oxidative stress and DNA double-strand breaks (DSBs) were detected in 9 non-immunocompromised individuals aged 80-96 years compared to 11 adults aged 27-44 years, before, as well as on days 1 and 14 after the first dose, and on day 14 after the second dose of the BNT162B2-mRNA vaccine (all p < 0.05). SARS-CoV-2 vaccination induced a resolvable increase in oxidative stress and DNA damage, but individual DSB-repair efficiency was unaffected by vaccination irrespective of age, confirming vaccination safety. Individual titers of anti-Spike-Receptor Binding Domain (S-RBD)-IgG antibodies, and the neutralizing capacity of circulating anti-SARS-CoV-2 antibodies, measured on day 14 after the second dose in all participants, correlated inversely with the corresponding pre-vaccination endogenous oxidative stress and DSB levels (all p < 0.05). In particular, a strong inverse correlation of individual pre-vaccination DSB levels with both the respective anti-S-RBD-IgG antibodies titers (r = -0.867) and neutralizing capacity of circulating anti-SARS-CoV-2 antibodies (r = -0.983) among the 9 older adults was evident. These findings suggest that humoral responses to SARS-CoV-2 vaccination may be weaker when immune cells are under oxidative and/or genomic stress. Whether such measurements may serve as biomarkers of vaccine efficacy in older adults warrants further studies.


Assuntos
Vacina BNT162 , COVID-19 , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Dano ao DNA , Humanos , Leucócitos Mononucleares , Estresse Oxidativo , SARS-CoV-2 , Vacinação , Vacinas Sintéticas , Vacinas de mRNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA