Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE J Biomed Health Inform ; 22(3): 714-721, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28391214

RESUMO

The time interval between consecutive heartbeats (interpulse interval, IPI) has previously been suggested for securing mobile-health solutions. This time interval is known to contain a degree of randomness, permitting the generation of a time- and person-specific identifier. It is commonly assumed that only devices trusted by a person can make physical contact with him/her, and that this physical contact allows each device to generate a similar identifier based on its own cardiac recordings. Under these conditions, the identifiers generated by different trusted devices can facilitate secure authentication. Recently, a wide range of techniques have been proposed for measuring heartbeats remotely, a prominent example of which is remote photoplethysmography (rPPG). These techniques may pose a significant threat to heartbeat-based security, as an adversary may pretend to be a trusted device by generating a similar identifier without physical contact, thus bypassing one of the core security conditions. In this paper, we assess the feasibility of such remote attacks using state-of-the-art rPPG methods. Our evaluation shows that rPPG has similar accuracy as contact PPG and, thus, forms a substantial threat to heartbeat-based-security systems that permit trusted devices to obtain their identifiers from contact PPG recordings. Conversely, rPPG cannot obtain an accurate representation of an identifier generated from electrical cardiac signals, making the latter invulnerable to state-of-the-art remote attacks.


Assuntos
Segurança Computacional , Frequência Cardíaca/fisiologia , Fotopletismografia/métodos , Processamento de Sinais Assistido por Computador , Adulto , Feminino , Humanos , Masculino , Telemedicina
2.
IEEE J Biomed Health Inform ; 21(1): 254-262, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26540720

RESUMO

In heart-beat-based security, a security key is derived from the time difference between consecutive heart beats (the inter-pulse interval, IPI), which may, subsequently, be used to enable secure communication. While heart-beat-based security holds promise in mobile health (mHealth) applications, there currently exists no work that provides a detailed characterization of the delivered security in a real system. In this paper, we evaluate the strength of IPI-based security keys in the context of entity authentication. We investigate several aspects that should be considered in practice, including subjects with reduced heart-rate variability (HRV), different sensor-sampling frequencies, intersensor variability (i.e., how accurate each entity may measure heart beats) as well as average and worst-case-authentication time. Contrary to the current state of the art, our evaluation demonstrates that authentication using multiple, less-entropic keys may actually increase the key strength by reducing the effects of intersensor variability. Moreover, we find that the maximal key strength of a 60-bit key varies between 29.2 bits and only 5.7 bits, depending on the subject's HRV. To improve security, we introduce the inter-multi-pulse interval (ImPI), a novel method of extracting entropy from the heart by considering the time difference between nonconsecutive heart beats. Given the same authentication time, using the ImPI for key generation increases key strength by up to 3.4 × (+19.2 bits) for subjects with limited HRV, at the cost of an extended key-generation time of 4.8 × (+45 s).


Assuntos
Identificação Biométrica/métodos , Segurança Computacional , Frequência Cardíaca/fisiologia , Telemedicina/métodos , Humanos
3.
J Neural Eng ; 14(6): 066008, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28707628

RESUMO

OBJECTIVE: The advent of high-performance computing (HPC) in recent years has led to its increasing use in brain studies through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a homogeneous acceleration platform to effectively address the complete array of modeling requirements. APPROACH: In this paper we propose and build BrainFrame, a heterogeneous acceleration platform that incorporates three distinct acceleration technologies, an Intel Xeon-Phi CPU, a NVidia GP-GPU and a Maxeler Dataflow Engine. The PyNN software framework is also integrated into the platform. As a challenging proof of concept, we analyze the performance of BrainFrame on different experiment instances of a state-of-the-art neuron model, representing the inferior-olivary nucleus using a biophysically-meaningful, extended Hodgkin-Huxley representation. The model instances take into account not only the neuronal-network dimensions but also different network-connectivity densities, which can drastically affect the workload's performance characteristics. MAIN RESULTS: The combined use of different HPC technologies demonstrates that BrainFrame is better able to cope with the modeling diversity encountered in realistic experiments while at the same time running on significantly lower energy budgets. Our performance analysis clearly shows that the model directly affects performance and all three technologies are required to cope with all the model use cases. SIGNIFICANCE: The BrainFrame framework is designed to transparently configure and select the appropriate back-end accelerator technology for use per simulation run. The PyNN integration provides a familiar bridge to the vast number of models already available. Additionally, it gives a clear roadmap for extending the platform support beyond the proof of concept, with improved usability and directly useful features to the computational-neuroscience community, paving the way for wider adoption.


Assuntos
Cerebelo , Simulação por Computador , Metodologias Computacionais , Rede Nervosa , Neurônios , Núcleo Olivar , Algoritmos , Encéfalo/fisiologia , Cerebelo/fisiologia , Simulação por Computador/tendências , Humanos , Neurônios/fisiologia , Núcleo Olivar/fisiologia , Software/tendências
4.
Artigo em Inglês | MEDLINE | ID: mdl-25571215

RESUMO

The Inter-Pulse-Interval (IPI) of heart beats has previously been suggested for security in mobile health (mHealth) applications. In IPI-based security, secure communication is facilitated through a security key derived from the time difference between heart beats. However, there currently exists no work which considers the effect on security of imperfect heart-beat (peak) detection. This is a crucial aspect of IPI-based security and likely to happen in a real system. In this paper, we evaluate the effects of peak misdetection on the security performance of IPI-based security. It is shown that even with a high peak detection rate between 99.9% and 99.0%, a significant drop in security performance may be observed (between -70% and -303%) compared to having perfect peak detection. We show that authenticating using smaller keys yields both stronger keys as well as potentially faster authentication in case of imperfect heart beat detection. Finally, we present an algorithm which tolerates the effect of a single misdetected peak and increases the security performance by up to 155%.


Assuntos
Segurança Computacional , Frequência Cardíaca/fisiologia , Algoritmos , Entropia , Humanos , Telemedicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA