Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(2): e16565, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356112

RESUMO

Acid mine drainage (AMD) waters are a severe environmental threat, due to their high metal content and low pH (pH <3). Current technologies treating AMD utilize neutrophilic sulfate-reducing microorganisms (SRMs), but acidophilic SRM could offer advantages. As AMDs are low in organics these processes require electron donor addition, which is often incompletely oxidized into organic acids (e.g., acetic acid). At low pH, acetic acid is undissociated and toxic to microorganisms. We investigated the stress response of the acetotrophic Acididesulfobacillus acetoxydans to acetic acid. A. acetoxydans was cultivated in bioreactors at pH 5.0 (optimum). For stress experiments, triplicate reactors were spiked until 7.5 mM of acetic acid and compared with (non-spiked) triplicate reactors for physiological, transcriptomic, and membrane lipid changes. After acetic acid spiking, the optical density initially dropped, followed by an adaptation phase during which growth resumed at a lower growth rate. Transcriptome analysis revealed a downregulation of genes involved in glutamate and aspartate synthesis following spiking. Membrane lipid analysis revealed a decrease in iso and anteiso fatty acid relative abundance; and an increase of acetyl-CoA as a fatty acid precursor. These adaptations allow A. acetoxydans to detoxify acetic acid, creating milder conditions for other microorganisms in AMD environments.


Assuntos
Ácido Acético , Sulfatos , Reatores Biológicos , Ácidos , Ácidos Graxos , Lipídeos de Membrana
2.
Biotechnol Bioeng ; 121(4): 1325-1335, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38265153

RESUMO

Syngas fermentation has gained momentum over the last decades. The cost-efficient design of industrial-scale bioprocesses is highly dependent on quantitative microbial growth data. Kinetic and stoichiometric models for syngas-converting microbes exist, but accurate experimental validation of the derived parameters is lacking. Here, we describe a novel experimental approach for measuring substrate uptake kinetics of gas-fermenting microbes using the model microorganism Clostridium autoethanogenum. One-hour disturbances of a steady-state chemostat bioreactor with increased CO partial pressures (up to 1.2 bar) allowed for measurement of biomass-specific CO uptake- and CO2 production rates ( q CO ${q}_{{CO}}$ , q CO 2 ${q}_{{{CO}}_{2}}$ ) using off-gas analysis. At a pCO of 1.2 bar, a q CO ${q}_{{CO}}$ of -119 ± 1 mmol g-1 X h-1 was measured. This value is 1.8-3.5-fold higher than previously reported experimental and kinetic modeling results for syngas fermenters. Analysis of the catabolic flux distribution reveals a metabolic shift towards ethanol production at the expense of acetate at pCO ≥ $\ge $ 0.6 atm, likely to be mediated by acetate availability and cellular redox state. We characterized this metabolic shift as acetogenic overflow metabolism. These results provide key mechanistic understanding of the factors steering the product spectrum of CO fermentation in C. autoethanogenum and emphasize the importance of dedicated experimental validation of kinetic parameters.


Assuntos
Monóxido de Carbono , Gases , Monóxido de Carbono/metabolismo , Fermentação , Clostridium/metabolismo , Acetatos/metabolismo
3.
Appl Microbiol Biotechnol ; 108(1): 407, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963458

RESUMO

Co-aggregation of anaerobic microorganisms into suspended microbial biofilms (aggregates) serves ecological and biotechnological functions. Tightly packed aggregates of metabolically interdependent bacteria and archaea play key roles in cycling of carbon and nitrogen. Additionally, in biotechnological applications, such as wastewater treatment, microbial aggregates provide a complete metabolic network to convert complex organic material. Currently, experimental data explaining the mechanisms behind microbial co-aggregation in anoxic environments is scarce and scattered across the literature. To what extent does this process resemble co-aggregation in aerobic environments? Does the limited availability of terminal electron acceptors drive mutualistic microbial relationships, contrary to the commensal relationships observed in oxygen-rich environments? And do co-aggregating bacteria and archaea, which depend on each other to harvest the bare minimum Gibbs energy from energy-poor substrates, use similar cellular mechanisms as those used by pathogenic bacteria that form biofilms? Here, we provide an overview of the current understanding of why and how mixed anaerobic microbial communities co-aggregate and discuss potential future scientific advancements that could improve the study of anaerobic suspended aggregates. KEY POINTS: • Metabolic dependency promotes aggregation of anaerobic bacteria and archaea • Flagella, pili, and adhesins play a role in the formation of anaerobic aggregates • Cyclic di-GMP/AMP signaling may trigger the polysaccharides production in anaerobes.


Assuntos
Archaea , Biofilmes , Archaea/metabolismo , Anaerobiose , Biofilmes/crescimento & desenvolvimento , Bactérias Anaeróbias/metabolismo , Bactérias Anaeróbias/crescimento & desenvolvimento , Bactérias/metabolismo , Bactérias/genética , Interações Microbianas
4.
Appl Microbiol Biotechnol ; 108(1): 127, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229305

RESUMO

For several decades, the formation of microbial self-aggregates, known as granules, has been extensively documented in the context of anaerobic digestion. However, current understanding of the underlying microbial-associated mechanisms responsible for this phenomenon remains limited. This study examined morphological and biochemical changes associated with cell aggregation in model co-cultures of the syntrophic propionate oxidizing bacterium Syntrophobacterium fumaroxidans and hydrogenotrophic methanogens, Methanospirillum hungatei or Methanobacterium formicicum. Formerly, we observed that when syntrophs grow for long periods with methanogens, cultures tend to form aggregates visible to the eye. In this study, we maintained syntrophic co-cultures of S. fumaroxidans with either M. hungatei or M. formicicum for a year in a fed-batch growth mode to stimulate aggregation. Millimeter-scale aggregates were observed in both co-cultures within the first 5 months of cultivation. In addition, we detected quorum sensing molecules, specifically N-acyl homoserine lactones, in co-culture supernatants preceding the formation of macro-aggregates (with diameter of more than 20 µm). Comparative transcriptomics revealed higher expression of genes related to signal transduction, polysaccharide secretion and metal transporters in the late-aggregation state co-cultures, compared to the initial ones. This is the first study to report in detail both biochemical and physiological changes associated with the aggregate formation in syntrophic methanogenic co-cultures. KEYPOINTS: • Syntrophic co-cultures formed mm-scale aggregates within 5 months of fed-batch cultivation. • N-acyl homoserine lactones were detected during the formation of aggregates. • Aggregated co-cultures exhibited upregulated expression of adhesins- and polysaccharide-associated genes.


Assuntos
Deltaproteobacteria , Euryarchaeota , Homosserina/metabolismo , Euryarchaeota/metabolismo , Polissacarídeos/metabolismo , Lactonas/metabolismo , Metano/metabolismo
5.
Antonie Van Leeuwenhoek ; 117(1): 47, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427176

RESUMO

Desulfofundulus kuznetsovii is a thermophilic, spore-forming sulphate-reducing bacterium in the family Peptococcaceae. In this study, we describe a newly isolated strain of D. kuznetsovii, strain TPOSR, and compare its metabolism to the type strain D. kuznetsovii 17T. Both strains grow on a large variety of alcohols, such as methanol, ethanol and propane-diols, coupled to the reduction of sulphate. Strain 17T metabolizes methanol via two routes, one involving a cobalt-dependent methyl transferase and the other using a cobalt-independent alcohol dehydrogenase. However, strain TPOSR, which shares 97% average nucleotide identity with D. kuznetsovii strain 17T, lacks several genes from the methyl transferase operon found in strain 17T. The gene encoding the catalytically active methyl transferase subunit B is missing, indicating that strain TPOSR utilizes the alcohol dehydrogenase pathway exclusively. Both strains grew with methanol during cobalt starvation, but growth was impaired. Strain 17T was more sensitive to cobalt deficiency, due to the repression of its methyl transferase system. Our findings shed light on the metabolic diversity of D. kuznetsovii and their metabolic differences of encoding one or two routes for the conversion of methanol.


Assuntos
Álcool Desidrogenase , Metanol , Peptococcaceae , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Metanol/metabolismo , Oxirredução , Transferases/metabolismo , Sulfatos/metabolismo , Cobalto , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-37234030

RESUMO

Strain AMPT has been previously suggested as a strain of the species Moorella thermoacetica Jiang et al. 2009 (based on the high 16S rRNA gene identity, 98.3 %). However, genome-based phylogenetic analysis of strain AMPT reveals that this bacterium is in fact a novel species of the genus Moorella. Genome relatedness indices between strain AMPT and Moorella thermoacetica DSM 521T were below the minimum threshold values required to consider them members of the same species (digital DNA-DNA hybridization, 52.2 % (<70%); average nucleotide identity, 93.2 % (<95%)). Based on phylogenetic and phenotypic results we recommend that strain AMPT (DSM 21394T=JCM 35360T) should be classified as representing new species, for which we propose the name Moorella caeni sp. nov.


Assuntos
Moorella , Moorella/genética , Ácidos Graxos/química , Esgotos/microbiologia , Metanol , Anaerobiose , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Análise de Sequência de DNA
7.
Environ Sci Technol ; 57(35): 13217-13225, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37604486

RESUMO

Anaerobic and aerobic granular sludge processes are widely applied in wastewater treatment. In these systems, microorganisms grow in dense aggregates due to the production of extracellular polymeric substances (EPS). This study investigates the sialylation and sulfation of anionic glyconconjugates in anaerobic and aerobic granular sludges collected from full-scale wastewater treatment processes. Size exclusion chromatography revealed a wide molecular weight distribution (3.5 to >5500 kDa) of the alkaline-extracted EPS. The high-molecular weight fraction (>5500 kDa), comprising 16.9-27.4% of EPS, was dominant with glycoconjugates. Mass spectrometry analysis and quantification assays identified nonulosonic acids (NulOs, e.g., bacterial sialic acids) and sulfated groups contributing to the negative charge in all EPS fractions. NulOs were predominantly present in the high-molecular weight fraction (47.2-84.3% of all detected NulOs), while sulfated glycoconjugates were distributed across the molecular weight fractions. Microorganisms, closely related to genera found in the granular sludge communities, contained genes responsible for NulO and sulfate group synthesis or transfer. The similar distribution patterns of sialylation and sulfation of the anionic glycoconjugates in the EPS samples indicate that these two glycoconjugate modifications commonly occur in the EPS of aerobic and anaerobic granular sludges.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Anaerobiose , Peso Molecular , Glicoconjugados , Sulfatos , Óxidos de Enxofre
8.
Environ Res ; 239(Pt 2): 117376, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832766

RESUMO

Most of methane (CH4) emissions contain low CH4 concentrations and typically occur at irregular intervals, which hinders the implementation and performance of methane abatement processes. This study aimed at understanding the metabolic mechanisms that allow methane oxidizing bacteria (MOB) to survive for long periods of time under methane starvation. To this aim, we used an omics-approach and studied the diversity and metabolism of MOB and non-MOB in bioreactors exposed to low CH4 concentrations under feast-famine cycles of 5 days and supplied with nutrient-rich broth. The 16S rRNA and the pmoA transcripts revealed that the most abundant and active MOB during feast and famine conditions belonged to the alphaproteobacterial genus Methylocystis (91-65%). The closest Methylocystis species were M. parvus and M. echinoides. Nitrifiers and denitrifiers were the most representative non-MOB communities, which likely acted as detoxifiers of the system. During starvation periods, the induced activity of CH4 oxidation was not lost, with the particulate methane monooxygenase of alphaproteobacterial MOB playing a key role in energy production. The polyhydroxyalkanoate and nitrification metabolisms of MOB had also an important role during feast-famine cycles, maintaining cell viability when CH4 concentrations were negligible. This research shows that there is an emergence and resilience of conventional alphaproteobacterial MOB, being the genus Methylocystis a centrepiece in environments exposed to dilute and intermittent methane emissions. This knowledge can be applied to the operation of bioreactors subjected to the treatment of dilute and discontinuous emissions via controlled bioaugmentation.


Assuntos
Reatores Biológicos , Metano , RNA Ribossômico 16S/genética , Oxirredução , Microbiologia do Solo
9.
Appl Environ Microbiol ; 88(13): e0039122, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35699440

RESUMO

Syntrophic anaerobic consortia comprised of fatty acid-degrading bacteria and hydrogen/formate-scavenging methanogenic archaea are of central importance for balanced and resilient natural and manufactured ecosystems: anoxic sediments, soils, and wastewater treatment bioreactors. Previously published studies investigated interaction between the syntrophic bi-cultures, but little information is available on the influence of fermentative bacteria on syntrophic fatty acid oxidation, even though fermentative organisms are always present together with syntrophic partners in the above-mentioned ecosystems. Here, we present experimental observations of stimulated butyrate oxidation and methane generation by a coculture of Syntrophomonas wolfei with any of the following methanogens: Methanospirillum hungatei, Methanobrevibacter arboriphilus, or Methanobacterium formicicum due to the addition of a fermentative Trichococcus flocculiformis strain ES5. The addition of T. flocculiformis ES5 to the syntrophic cocultures led to an increase in the rates of butyrate consumption (120%) and volumetric methane production (150%). Scanning electron microscopy of the most positively affected coculture (S. wolfei, M. hungatei, and T. flocculiformis ES5) revealed a tendency of T. flocculiformis ES5 to aggregate with the syntrophic partners. Analysis of coculture's proteome with or without addition of the fermentative bacterium points to a potential link with signal transducing systems of M. hungatei, as well as activation of additional butyryl coenzyme A dehydrogenase and an electron transfer flavoprotein in S. wolfei. IMPORTANCE Results from the present study open doors to fascinating research on complex microbial cultures in anaerobic environments (of biotechnological and ecological relevance). Such studies of defined mixed populations are critical to understanding the highly intertwined natural and engineered microbial systems and to developing more reliable and trustable metabolic models. By investigating the existing cultured microbial consortia, like the ones described here, we can acquire knowledge on microbial interactions that go beyond "who feeds whom" relations but yet benefit the parties involved. Transfer of signaling compounds and stimulation of gene expression are examples of indirect influence that members of mixed communities can exert on each other. Understanding such microbial relationships will enable development of new sustainable biotechnologies with mixed microbial cocultures and contribute to the general understanding of the complex natural microbial interactions.


Assuntos
Euryarchaeota , Methanospirillum , Bactérias/genética , Butiratos/metabolismo , Carnobacteriaceae , Clostridiales , Técnicas de Cocultura , Ecossistema , Euryarchaeota/metabolismo , Metano/metabolismo , Methanospirillum/metabolismo
10.
Microb Cell Fact ; 21(1): 116, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710409

RESUMO

BACKGROUND: Microbial production of propionate from diluted streams of ethanol (e.g., deriving from syngas fermentation) is a sustainable alternative to the petrochemical production route. Yet, few ethanol-fermenting propionigenic bacteria are known, and understanding of their metabolism is limited. Anaerotignum neopropionicum is a propionate-producing bacterium that uses the acrylate pathway to ferment ethanol and CO2 to propionate and acetate. In this work, we used computational and experimental methods to study the metabolism of A. neopropionicum and, in particular, the pathway for conversion of ethanol into propionate. RESULTS: Our work describes iANEO_SB607, the first genome-scale metabolic model (GEM) of A. neopropionicum. The model was built combining the use of automatic tools with an extensive manual curation process, and it was validated with experimental data from this and published studies. The model predicted growth of A. neopropionicum on ethanol, lactate, sugars and amino acids, matching observed phenotypes. In addition, the model was used to implement a dynamic flux balance analysis (dFBA) approach that accurately predicted the fermentation profile of A. neopropionicum during batch growth on ethanol. A systematic analysis of the metabolism of A. neopropionicum combined with model simulations shed light into the mechanism of ethanol fermentation via the acrylate pathway, and revealed the presence of the electron-transferring complexes NADH-dependent reduced ferredoxin:NADP+ oxidoreductase (Nfn) and acryloyl-CoA reductase-EtfAB, identified for the first time in this bacterium. CONCLUSIONS: The realisation of the GEM iANEO_SB607 is a stepping stone towards the understanding of the metabolism of the propionate-producer A. neopropionicum. With it, we have gained insight into the functioning of the acrylate pathway and energetic aspects of the cell, with focus on the fermentation of ethanol. Overall, this study provides a basis to further exploit the potential of propionigenic bacteria as microbial cell factories.


Assuntos
Clostridium , Propionatos , Acrilatos/metabolismo , Clostridiales , Clostridium/metabolismo , Etanol/metabolismo , Fermentação , Ácido Láctico/metabolismo , Propionatos/metabolismo
11.
Microb Cell Fact ; 21(1): 243, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36419165

RESUMO

BACKGROUND: Ethyl acetate is a bulk chemical traditionally produced via energy intensive chemical esterification. Microbial production of this compound offers promise as a more sustainable alternative process. So far, efforts have focused on using sugar-based feedstocks for microbial ester production, but extension to one-carbon substrates, such as CO and CO2/H2, is desirable. Acetogens present a promising microbial platform for the production of ethyl esters from these one-carbon substrates. RESULTS: We engineered the acetogen C. autoethanogenum to produce ethyl acetate from CO by heterologous expression of an alcohol acetyltransferase (AAT), which catalyzes the formation of ethyl acetate from acetyl-CoA and ethanol. Two AATs, Eat1 from Kluyveromyces marxianus and Atf1 from Saccharomyces cerevisiae, were expressed in C. autoethanogenum. Strains expressing Atf1 produced up to 0.2 mM ethyl acetate. Ethyl acetate production was barely detectable (< 0.01 mM) for strains expressing Eat1. Supplementation of ethanol was investigated as potential boost for ethyl acetate production but resulted only in a 1.5-fold increase (0.3 mM ethyl acetate). Besides ethyl acetate, C. autoethanogenum expressing Atf1 could produce 4.5 mM of butyl acetate when 20 mM butanol was supplemented to the growth medium. CONCLUSIONS: This work offers for the first time a proof-of-principle that autotrophic short chain ester production from C1-carbon feedstocks is possible and offers leads on how this approach can be optimized in the future.


Assuntos
Etanol , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Ésteres , Carbono
12.
Environ Sci Technol ; 56(8): 4749-4775, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35357187

RESUMO

Several problems associated with the presence of lipids in wastewater treatment plants are usually overcome by removing them ahead of the biological treatment. However, because of their high energy content, waste lipids are interesting yet challenging pollutants in anaerobic wastewater treatment and codigestion processes. The maximal amount of waste lipids that can be sustainably accommodated, and effectively converted to methane in anaerobic reactors, is limited by several problems including adsorption, sludge flotation, washout, and inhibition. These difficulties can be circumvented by appropriate feeding, mixing, and solids separation strategies, provided by suitable reactor technology and operation. In recent years, membrane bioreactors and flotation-based bioreactors have been developed to treat lipid-rich wastewater. In parallel, the increasing knowledge on the diversity of complex microbial communities in anaerobic sludge, and on interspecies microbial interactions, contributed to extend the knowledge and to understand more precisely the limits and constraints influencing the anaerobic biodegradation of lipids in anaerobic reactors. This critical review discusses the most important principles underpinning the degradation process and recent key discoveries and outlines the current knowledge coupling fundamental and applied aspects. A critical assessment of knowledge gaps in the field is also presented by integrating sectorial perspectives of academic researchers and of prominent developers of anaerobic technology.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Lipídeos , Metano/metabolismo , Águas Residuárias
13.
Environ Microbiol ; 23(3): 1348-1362, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33587796

RESUMO

Methanol is an ubiquitous compound that plays a role in microbial processes as a carbon and energy source, intermediate in metabolic processes or as end product in fermentation. In anoxic environments, methanol can act as the sole carbon and energy source for several guilds of microorganisms: sulfate-reducing microorganisms, nitrate-reducing microorganisms, acetogens and methanogens. In marine sediments, these guilds compete for methanol as their common substrate, employing different biochemical pathways. In this review, we will give an overview of current knowledge of the various ways in which methanol reaches marine sediments, the ecology of microorganisms capable of utilizing methanol and their metabolism. Furthermore, through a metagenomic analysis, we shed light on the unknown diversity of methanol utilizers in marine sediments which is yet to be explored.


Assuntos
Euryarchaeota , Metanol , Anaerobiose , Carbono , Sedimentos Geológicos
14.
Environ Microbiol ; 23(7): 3460-3476, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32955149

RESUMO

An anaerobic enrichment with CO from sediments of hypersaline soda lakes resulted in a methane-forming binary culture, whereby CO was utilized by a bacterium and not the methanogenic partner. The bacterial isolate ANCO1 forms a deep-branching phylogenetic lineage at the level of a new family within the class 'Natranaerobiia'. It is an extreme haloalkaliphilic and moderate thermophilic acetogen utilizing CO, formate, pyruvate and lactate as electron donors and thiosulfate, nitrate (reduced to ammonia) and fumarate as electron acceptors. The genome of ANCO1 encodes a full Wood-Ljungdahl pathway allowing for CO oxidation and acetogenic conversion of pyruvate. A locus encoding Nap nitrate reductase/NrfA ammonifying nitrite reductase is also present. Thiosulfate respiration is encoded by a Phs/Psr-like operon. The organism obviously relies on Na-based bioenergetics, since the genome encodes for the Na+ -Rnf complex, Na+ -F1F0 ATPase and Na+ -translocating decarboxylase. Glycine betaine serves as a compatible solute. ANCO1 has an unusual membrane polar lipid composition dominated by diethers, more common among archaea, probably a result of adaptation to multiple extremophilic conditions. Overall, ANCO1 represents a unique example of a triple extremophilic CO-oxidizing anaerobe and is classified as a novel genus and species Natranaerofaba carboxydovora in a novel family Natranaerofabacea.


Assuntos
Euryarchaeota , Lagos , Crescimento Quimioautotrófico , DNA Bacteriano , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Appl Environ Microbiol ; 87(14): e0283920, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33990298

RESUMO

Gas fermentation is a promising way to convert CO-rich gases to chemicals. We studied the use of synthetic cocultures composed of carboxydotrophic and propionigenic bacteria to convert CO to propionate. So far, isolated carboxydotrophs cannot directly ferment CO to propionate, and therefore, this cocultivation approach was investigated. Four distinct synthetic cocultures were constructed, consisting of Acetobacterium wieringae (DSM 1911T) and Pelobacter propionicus (DSM 2379T), Ac. wieringae (DSM 1911T) and Anaerotignum neopropionicum (DSM 3847T), Ac. wieringae strain JM and P. propionicus (DSM 2379T), and Ac. wieringae strain JM and An. neopropionicum (DSM 3847T). Propionate was produced by all the cocultures, with the highest titer (∼24 mM) being measured in the coculture composed of Ac. wieringae strain JM and An. neopropionicum, which also produced isovalerate (∼4 mM), butyrate (∼1 mM), and isobutyrate (0.3 mM). This coculture was further studied using proteogenomics. As expected, enzymes involved in the Wood-Ljungdahl pathway in Ac. wieringae strain JM, which are responsible for the conversion of CO to ethanol and acetate, were detected; the proteome of An. neopropionicum confirmed the conversion of ethanol to propionate via the acrylate pathway. In addition, proteins related to amino acid metabolism and stress response were highly abundant during cocultivation, which raises the hypothesis that amino acids are exchanged by the two microorganisms, accompanied by isovalerate and isobutyrate production. This highlights the importance of explicitly looking at fortuitous microbial interactions during cocultivation to fully understand coculture behavior. IMPORTANCE Syngas fermentation has great potential for the sustainable production of chemicals from wastes (via prior gasification) and flue gases containing CO/CO2. Research efforts need to be directed toward expanding the product portfolio of gas fermentation, which is currently limited to mainly acetate and ethanol. This study provides the basis for a microbial process to produce propionate from CO using synthetic cocultures composed of acetogenic and propionigenic bacteria and elucidates the metabolic pathways involved. Furthermore, based on proteomics results, we hypothesize that the two bacterial species engage in an interaction that results in amino acid exchange, which subsequently promotes isovalerate and isobutyrate production. These findings provide a new understanding of gas fermentation and a coculturing strategy for expanding the product spectrum of microbial conversion of CO/CO2.


Assuntos
Acetobacterium/metabolismo , Monóxido de Carbono/metabolismo , Deltaproteobacteria/metabolismo , Propionatos/metabolismo , Acetobacterium/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cocultura , Deltaproteobacteria/efeitos dos fármacos , Fermentação , Proteoma/metabolismo , Acetato de Sódio/farmacologia
16.
BMC Genomics ; 21(1): 24, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31914924

RESUMO

BACKGROUND: The genus Trichococcus currently contains nine species: T. flocculiformis, T. pasteurii, T. palustris, T. collinsii, T. patagoniensis, T. ilyis, T. paludicola, T. alkaliphilus, and T. shcherbakoviae. In general, Trichococcus species can degrade a wide range of carbohydrates. However, only T. pasteurii and a non-characterized strain of Trichococcus, strain ES5, have the capacity of converting glycerol to mainly 1,3-propanediol. Comparative genomic analysis of Trichococcus species provides the opportunity to further explore the physiological potential and uncover novel properties of this genus. RESULTS: In this study, a genotype-phenotype comparative analysis of Trichococcus strains was performed. The genome of Trichococcus strain ES5 was sequenced and included in the comparison with the other nine type strains. Genes encoding functions related to e.g. the utilization of different carbon sources (glycerol, arabinan and alginate), antibiotic resistance, tolerance to low temperature and osmoregulation could be identified in all the sequences analysed. T. pasteurii and Trichococcus strain ES5 contain a operon with genes encoding necessary enzymes for 1,3-PDO production from glycerol. All the analysed genomes comprise genes encoding for cold shock domains, but only five of the Trichococcus species can grow at 0 °C. Protein domains associated to osmoregulation mechanisms are encoded in the genomes of all Trichococcus species, except in T. palustris, which had a lower resistance to salinity than the other nine studied Trichococcus strains. CONCLUSIONS: Genome analysis and comparison of ten Trichococcus strains allowed the identification of physiological traits related to substrate utilization and environmental stress resistance (e.g. to cold and salinity). Some substrates were used by single species, e.g. alginate by T. collinsii and arabinan by T. alkaliphilus. Strain ES5 may represent a subspecies of Trichococcus flocculiformis and contrary to the type strain (DSM 2094T), is able to grow on glycerol with the production of 1,3-propanediol.


Assuntos
Carnobacteriaceae/genética , Carnobacteriaceae/fisiologia , Técnicas de Tipagem Bacteriana , Carnobacteriaceae/metabolismo , Fenótipo , Filogenia , Propilenoglicóis/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
17.
Biotechnol Appl Biochem ; 67(5): 744-750, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32282086

RESUMO

Methanogens are responsible for the last step in anaerobic digestion (AD), in which methane (a biofuel) is produced. Some methanogens can cometabolize chlorinated pollutants, contributing for their removal during AD. Methanogenic cofactors involved in cometabolic reductive dechlorination, such as F430 and cobalamin, contain metal ions (nickel, cobalt, iron) in their structure. We hypothesized that the supplementation of trace metals could improve methane production and the cometabolic dechlorination of 1,2-dichloroethene (DCE) by pure cultures of Methanosarcina barkeri. Nickel, cobalt, and iron were added to cultures of M. barkeri growing on methanol and methanol plus DCE. Metal amendment improved DCE dechlorination to vinyl chloride (VC): assays with 20 µM of Fe3+ showed the highest final concentration of VC (5× higher than in controls without Fe3+ ), but also in assays with 5.5 µM of Co2+ and 5 µM of Ni2+ VC formation was improved (3.5-4× higher than in controls without the respective metals). Dosing of metals could be useful to improve anaerobic removal of chlorinated compounds, and more importantly decrease the detrimental effect of DCE on methane production in anaerobic digesters.


Assuntos
Dicloroetilenos/metabolismo , Metano/metabolismo , Metanol/metabolismo , Methanosarcina barkeri/metabolismo , Biodegradação Ambiental , Cobalto/metabolismo , Halogenação , Ferro/metabolismo , Níquel/metabolismo
18.
Int J Syst Evol Microbiol ; 69(2): 529-534, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30605071

RESUMO

A new species of the genus Trichococcus, strain Art1T, was isolated from a psychrotolerant syntrophic propionate-oxidizing consortium, obtained before from a low-temperature EGSB reactor fed with a mixture of VFAs (acetate, propionate and butyrate). The 16S rRNA gene sequence of strain Art1T was highly similar to those of other Trichococcus species (99.7-99.9 %) but digital DNA-DNA hybridization values were lower than those recommended for the delineation of a novel species, indicating that strain Art1T is a novel species of the genus Trichococcus. Cells of strain Art1T are non-motile cocci with a diameter of 0.5-2.0 µm and were observed singularly, in pairs, short chains and irregular conglomerates. Cells of Art1T stained Gram-positive and produced extracellular polymeric substances . Growth was optimal at pH 6-7.5 and cells could grow in a temperature range of from -2 to 30 °C (optimum 25-30 °C). Strain Art1T can degrade several carbohydrates, and the main products from glucose fermentation are lactate, acetate, formate and ethanol. The genomic DNA G+C content of strain Art1T is 46.7 %. The major components of the cellular fatty acids are C16 : 1 ω9c, C16 : 0 and C18 : 1 ω9c. Based on genomic and physiological characteristics of strain Art1T, a new species of the genus Trichococcus, Trichococcusshcherbakoviae, is proposed. The type strain of Trichococcusshcherbakoviae is Art1T (=DSM 107162T = VKM B-3260T).


Assuntos
Reatores Biológicos/microbiologia , Carnobacteriaceae/classificação , Temperatura Baixa , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Carnobacteriaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Fermentação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
Environ Microbiol ; 20(12): 4503-4511, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30126076

RESUMO

Under methanogenic conditions, short-chain fatty acids are common byproducts from degradation of organic compounds and conversion of these acids is an important component of the global carbon cycle. Due to the thermodynamic difficulty of propionate degradation, this process requires syntrophic interaction between a bacterium and partner methanogen; however, the metabolic strategies and behaviour involved are not fully understood. In this study, the first genome analysis of obligately syntrophic propionate degraders (Pelotomaculum schinkii HH and P. propionicicum MGP) and comparison with other syntrophic propionate degrader genomes elucidated novel components of energy metabolism behind Pelotomaculum propionate oxidation. Combined with transcriptomic examination of P. schinkii behaviour in co-culture with Methanospirillum hungatei, we found that formate may be the preferred electron carrier for P. schinkii syntrophy. Propionate-derived menaquinol may be primarily re-oxidized to formate, and energy was conserved during formate generation through newly proposed proton-pumping formate extrusion. P. schinkii did not overexpress conventional energy metabolism associated with a model syntrophic propionate degrader Syntrophobacter fumaroxidans MPOB (i.e., CoA transferase, Fix and Rnf). We also found that P. schinkii and the partner methanogen may also interact through flagellar contact and amino acid and fructose exchange. These findings provide new understanding of syntrophic energy acquisition and interactions.


Assuntos
Peptococcaceae/metabolismo , Propionatos/metabolismo , Deltaproteobacteria/metabolismo , Metabolismo Energético , Formiatos/metabolismo , Methanospirillum/metabolismo , Oxirredução
20.
Int J Syst Evol Microbiol ; 66(2): 774-779, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26612136

RESUMO

A strictly anaerobic bacterium, strain DLD10T, was isolated from a biofilm that developed on a nanofiltration membrane treating anoxic groundwater using glycerol as substrate. Cells were straight to slightly curved rods 0.2-0.5 µm in diameter and 1-3 µm in length, non-motile and non-spore-forming. The optimum temperature and pH for growth were 30 °C and pH 7.0. Strain DLD10T was able to grow in the presence of 0.03-4.5 % (w/v) NaCl. Substrates utilized by strain DLD10T included glycerol and various carbohydrates (glucose, sucrose, fructose, mannose, arabinose, pectin, starch, xylan), which were mainly converted to ethanol, acetate, H2 and formate. Thiosulphate, sulphur and Fe(III) were used as electron acceptors, but sulphate, fumarate and nitrate were not. The predominant membrane fatty acids were C16 : 0, iso-C17 : 1 and C17 : 1ω8c. The DNA G+C content was 36.4 mol%. Strain DLD10T belongs to the family Lachnospiraceae and is distantly related to Clostridium populeti DSM 5832T, Hespellia porcina DSM 15481T and Robinsoniella peoriensis CCUG 48729T (93 % 16S rRNA gene sequence similarity). Physiological characteristics and phylogenetic analysis indicated that strain DLD10T is a representative of a novel species of a new genus, for which the name Lachnotalea glycerini gen. nov., sp. nov. is proposed. The type strain of Lachnotalea glycerini is DLD10T ( = DSM 28816T = JCM 30818T).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA