RESUMO
Environmental enrichment in zebrafish generally reduces anxiety-related behaviours, improves learning in maze trials and increases health and biological fitness. However, certain types of enrichment or certain conditions induce the opposite effects. Therefore, it is essential to study the characteristics of environmental enrichment that modulate these effects. This study aims to investigate if structural environmental enrichment and the way it is offered influence cognitive judgement bias and anxiety-like behaviours in adult zebrafish. The fish were assigned to six housing manipulations: constant barren, constant enrichment, gradual gain of enrichment, gradual loss of enrichment, sudden gain of enrichment and sudden loss of enrichment. We then transposed the cognitive judgment bias paradigm, formerly used in studies on other animals to measure the link between emotion and cognition, to objectively assess the impact of these manipulations on the zebrafish's interpretation of ambiguous stimuli, considering previous experiences and related emotional states. We used two battery tests (light/dark and activity tests), which measured anxiety-related behaviours to check if these tests covariate with cognitive bias results. The fish with a sudden gain in enrichment showed a pessimistic bias (interpreted ambiguous stimuli as negative). In addition, the fish that experienced a sudden gain and a gradual loss in enrichment showed more anxiety-like behaviours than the fish that experienced constant conditions or a gradual gain in enrichment. The data provide some proof that structural environmental enrichment and the way it is presented can alter zebrafish's cognitive bias and anxiety-like behaviours.
Assuntos
Julgamento , Peixe-Zebra , Animais , Cognição , Ansiedade , Emoções , Comportamento AnimalRESUMO
Like other animals, fish have unique personalities that can affect their cognition and responses to environmental stressors. These individual personality differences are often referred to as "behavioural syndromes" or "stress coping styles" and can include personality traits such as boldness, shyness, aggression, exploration, locomotor activity, and sociability. For example, bolder or proactive fish may be more likely to take risks and present lower hypothalamo-pituitary-adrenal/interrenal axis reactivity as compared to shy or reactive individuals. Likewise, learning and memory differ between fish personalities. Reactive or shy individuals tend to have faster learning and better association recall with aversive stimuli, while proactive or bold individuals tend to learn more quickly when presented with appetitive incentives. However, the influence of personality on cognitive processes other than cognitive achievement in fish has been scarcely explored. Cognitive bias tests have been employed to investigate the interplay between emotion and cognition in both humans and animals. Fish present cognitive bias processes (CBP) in which fish's interpretation of stimuli could be influenced by its current emotional state and open to environmental modulation. However, no study in fish has explored whether CBP, like in other species, can be interpreted as long-lasting traits and whether other individual characteristics may explain its variation. We hold the perspective that CBP could serve as a vulnerability factor for the onset, persistence, and recurrence of stress-related disorders. Therefore, studying fish's CBP as a state or trait and its interactions with individual variations may be valuable in future efforts to enhance our understanding of anxiety and stress neurobiology in animal models and humans.
RESUMO
Temporal discounting is a phenomenon where a reward loses its value as a function of time (e.g., a reward is more valuable immediately than when it delays in time). This is a type of intertemporal decision-making that has an association with impulsivity and self-control. Many pathologies exhibit higher discounting rates, meaning they discount more the values of rewards, such as addictive behaviors, bipolar disorder, attention-deficit/hyperactivity disorders, social anxiety disorders, and major depressive disorder, among others; thus, many studies look for the mechanism and neuromodulators of these decisions. This systematic review aims to investigate the association between pharmacological administration and changes in temporal discounting. A search was conducted in PubMed, Scopus, Web of Science, Science Direct and Cochrane. We used the PICO strategy: healthy humans (P-Participants) that received a pharmacological administration (I-Intervention) and the absence of a pharmacological administration or placebo (C-Comparison) to analyze the relationship between the pharmacological administration and the temporal discounting (O-outcome). Nineteen studies fulfilled the inclusion criteria. The most important findings were the involvement of dopamine modulation in a U-shape for choosing the delayed outcome (metoclopradime, haloperidol, and amisulpride). Furthermore, administration of tolcapone and high doses of d-amphetamine produced a preference for the delayed option. There was a time-dependent hydrocortisone effect in the preference for the immediate reward. Thus, it can be concluded that dopamine is a crucial modulator for temporal discounting, especially the D2 receptor, and cortisol also has an important time-dependent role in this type of decision. One of the limitations of this systematic review is the heterogeneity of the drugs used to assess the effect of temporal discounting.
RESUMO
Antagonist and long-lasting environmental manipulations (EM) have successfully induced or reduced the stress responses and quality of life of zebrafish. For instance, environmental enrichment (EE) generally reduces anxiety-related behaviours and improves immunity, while unpredictable chronic stress (UCS) and aquarium-related stressors generate the opposite effects. However, there is an absence of consistency in outcomes for some EM, such as acute exposure to stressors, social enrichment and some items of structural enrichment. Therefore, considering intraspecies variation (sex, personality, and strain), increasing intervention complexity while improving standardisation of protocols and contemplating the possibility that EE may act as a mild stressor on a spectrum between too much (UCS) and too little (standard conditions) stress intensity or stimulation, would reduce the inconsistencies of these outcomes. It would also help explore the mechanism behind stress resilience and to standardise EM protocols. Thus, this review critically analyses and compares knowledge existing over the last decade concerning environmental manipulations for zebrafish and the influences that sex, strain, and personality may have on behavioural, physiological, and fitness-related responses.