Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Fish Biol ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852616

RESUMO

Levels of dissolved oxygen in open ocean and coastal waters are decreasing (ocean deoxygenation), with poorly understood effects on marine megafauna. All of the more than 1000 species of elasmobranchs (sharks, skates, and rays) are obligate water breathers, with a variety of life-history strategies and oxygen requirements. This review demonstrates that although many elasmobranchs typically avoid hypoxic water, they also appear capable of withstanding mild to moderate hypoxia with changes in activity, ventilatory responses, alterations to circulatory and hematological parameters, and morphological alterations to gill structures. However, such strategies may be insufficient to withstand severe, progressive, or prolonged hypoxia or anoxia where anaerobic metabolic pathways may be used for limited periods. As water temperatures increase with climate warming, ectothermic elasmobranchs will exhibit elevated metabolic rates and are likely to be less able to tolerate the effects of even mild hypoxia associated with deoxygenation. As a result, sustained hypoxic conditions in warmer coastal or surface-pelagic waters are likely to lead to shifts in elasmobranch distributions. Mass mortalities of elasmobranchs linked directly to deoxygenation have only rarely been observed but are likely underreported. One key concern is how reductions in habitat volume as a result of expanding hypoxia resulting from deoxygenation will influence interactions between elasmobranchs and industrial fisheries. Catch per unit of effort of threatened pelagic sharks by longline fisheries, for instance, has been shown to be higher above oxygen minimum zones compared to adjacent, normoxic regions, and attributed to vertical habitat compression of sharks overlapping with increased fishing effort. How a compound stressor such as marine heatwaves alters vulnerability to deoxygenation remains an open question. With over a third of elasmobranch species listed as endangered, a priority for conservation and management now lies in understanding and mitigating ocean deoxygenation effects in addition to population declines already occurring from overfishing.

2.
J Fish Biol ; 103(5): 864-883, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37395550

RESUMO

The shortfin mako shark is a large-bodied pursuit predator thought to be capable of the highest swimming speeds of any elasmobranch and potentially one of the highest energetic demands of any marine fish. Nonetheless, few direct speed measurements have been reported for this species. Here, animal-borne bio-loggers attached to two mako sharks were used to provide direct measurements of swimming speeds, kinematics and thermal physiology. Mean sustained (cruising) speed was 0.90 m s-1 (±0.07 s.d.) with a mean tail-beat frequency (TBF) of 0.51 Hz (±0.16 s.d.). The maximum burst speed recorded was 5.02 m s-1 (TBFmax = 3.65 Hz) from a 2 m long female. Burst swimming was sustained for 14 s (mean speed = 2.38 m s-1 ), leading to a 0.24°C increase in white muscle temperature in the 12.5 min after the burst. Routine field metabolic rate was estimated at 185.2 mg O2 kg-1 h-1 (at 18°C ambient temperature). Gliding behaviour (zero TBF) was more frequently observed after periods of high activity, especially after capture when internal (white muscle) temperature approached 21°C (ambient temperature: 18.3°C), indicating gliding probably functions as an energy recovery mechanism and limits further metabolic heat production. The results show shortfin mako sharks generally cruise at speeds similar to other endothermic fish - but faster than ectothermic sharks - with the maximum recorded burst speed being among the highest so far directly measured among sharks, tunas and billfishes. This newly recorded high-oxygen-demand performance of mako sharks suggests it may be particularly vulnerable to habitat loss due to climate-driven ocean deoxygenation.


Assuntos
Tubarões , Feminino , Animais , Tubarões/fisiologia , Natação/fisiologia , Músculos , Temperatura , Atum
3.
J Fish Biol ; 101(5): 1160-1181, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36073958

RESUMO

Groups of basking sharks engaged in circling behaviour are rarely observed, and their function remains enigmatic in the absence of detailed observations. Here, underwater and aerial video recordings of multiple circling groups of basking sharks during late summer (August and September 2016-2021) in the eastern North Atlantic Ocean showed groups numbering between 6 and 23 non-feeding individuals of both sexes. Sharks swam slowly in a rotating "torus" (diameter range: 17-39 m), with individuals layered vertically from the surface to a maximum depth of 16 m. Within a torus, sharks engaged in close-following, echelon, close-flank approach or parallel-swimming behaviours. Measured shark total body lengths were 5.4-9.5 m (mean LT : 7.3 m ± 0.9 s.d.; median: 7.2 m, n = 27), overlapping known lengths of sexually mature males and females. Males possessed large claspers with abrasions that were also observed on female pectoral fins. Female body colouration was paler than that of males, similar to colour changes observed during courtship and mating in other shark species. Individuals associated with most other members rapidly (within minutes), indicating toroidal behaviours facilitate multiple interactions. Sharks interacted through fin-fin and fin-body contacts, rolling to expose the ventral surfaces to following sharks, and breaching behaviour. Toruses formed in late summer when feeding aggregations in zooplankton-rich thermal fronts switched to non-feeding following and circling behaviours. Collectively, the observations explain a courtship function for toruses. This study highlights northeast Atlantic coastal waters as a critical habitat supporting courtship reproductive behaviour of endangered basking sharks, the first such habitat identified for this species globally.


Assuntos
Corte , Tubarões , Masculino , Feminino , Animais , Oceano Atlântico , Ecossistema , Estações do Ano
4.
Proc Natl Acad Sci U S A ; 111(30): 11073-8, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25024221

RESUMO

Efficient searching is crucial for timely location of food and other resources. Recent studies show that diverse living animals use a theoretically optimal scale-free random search for sparse resources known as a Lévy walk, but little is known of the origins and evolution of foraging behavior and the search strategies of extinct organisms. Here, using simulations of self-avoiding trace fossil trails, we show that randomly introduced strophotaxis (U-turns)--initiated by obstructions such as self-trail avoidance or innate cueing--leads to random looping patterns with clustering across increasing scales that is consistent with the presence of Lévy walks. This predicts that optimal Lévy searches may emerge from simple behaviors observed in fossil trails. We then analyzed fossilized trails of benthic marine organisms by using a novel path analysis technique and find the first evidence, to our knowledge, of Lévy-like search strategies in extinct animals. Our results show that simple search behaviors of extinct animals in heterogeneous environments give rise to hierarchically nested Brownian walk clusters that converge to optimal Lévy patterns. Primary productivity collapse and large-scale food scarcity characterizing mass extinctions evident in the fossil record may have triggered adaptation of optimal Lévy-like searches. The findings suggest that Lévy-like behavior has been used by foragers since at least the Eocene but may have a more ancient origin, which might explain recent widespread observations of such patterns among modern taxa.


Assuntos
Comportamento Apetitivo , Fósseis , Modelos Teóricos
5.
Nature ; 465(7301): 1066-9, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20531470

RESUMO

An optimal search theory, the so-called Lévy-flight foraging hypothesis, predicts that predators should adopt search strategies known as Lévy flights where prey is sparse and distributed unpredictably, but that Brownian movement is sufficiently efficient for locating abundant prey. Empirical studies have generated controversy because the accuracy of statistical methods that have been used to identify Lévy behaviour has recently been questioned. Consequently, whether foragers exhibit Lévy flights in the wild remains unclear. Crucially, moreover, it has not been tested whether observed movement patterns across natural landscapes having different expected resource distributions conform to the theory's central predictions. Here we use maximum-likelihood methods to test for Lévy patterns in relation to environmental gradients in the largest animal movement data set assembled for this purpose. Strong support was found for Lévy search patterns across 14 species of open-ocean predatory fish (sharks, tuna, billfish and ocean sunfish), with some individuals switching between Lévy and Brownian movement as they traversed different habitat types. We tested the spatial occurrence of these two principal patterns and found Lévy behaviour to be associated with less productive waters (sparser prey) and Brownian movements to be associated with productive shelf or convergence-front habitats (abundant prey). These results are consistent with the Lévy-flight foraging hypothesis, supporting the contention that organism search strategies naturally evolved in such a way that they exploit optimal Lévy patterns.


Assuntos
Ecossistema , Peixes/fisiologia , Alimentos , Locomoção/fisiologia , Modelos Biológicos , Comportamento Predatório/fisiologia , Água do Mar , Sistemas de Identificação Animal , Animais , Evolução Biológica , Comportamento Exploratório/fisiologia , Funções Verossimilhança , Biologia Marinha , Perciformes/fisiologia , Tubarões/fisiologia , Natação/fisiologia
6.
Proc Natl Acad Sci U S A ; 109(19): 7169-74, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22529349

RESUMO

It is an open question how animals find food in dynamic natural environments where they possess little or no knowledge of where resources are located. Foraging theory predicts that in environments with sparsely distributed target resources, where forager knowledge about resources' locations is incomplete, Lévy flight movements optimize the success of random searches. However, the putative success of Lévy foraging has been demonstrated only in model simulations. Here, we use high-temporal-resolution Global Positioning System (GPS) tracking of wandering (Diomedea exulans) and black-browed albatrosses (Thalassarche melanophrys) with simultaneous recording of prey captures, to show that both species exhibit Lévy and Brownian movement patterns. We find that total prey masses captured by wandering albatrosses during Lévy movements exceed daily energy requirements by nearly fourfold, and approached yields by Brownian movements in other habitats. These results, together with our reanalysis of previously published albatross data, overturn the notion that albatrosses do not exhibit Lévy patterns during foraging, and demonstrate that Lévy flights of predators in dynamic natural environments present a beneficial alternative strategy to simple, spatially intensive behaviors. Our findings add support to the possibility that biological Lévy flight may have naturally evolved as a search strategy in response to sparse resources and scant information.


Assuntos
Aves/fisiologia , Comportamento Exploratório/fisiologia , Comportamento Alimentar/fisiologia , Voo Animal/fisiologia , Algoritmos , Migração Animal/fisiologia , Animais , Ecossistema , Cadeia Alimentar , Sistemas de Informação Geográfica , Geografia , Oceano Índico , Modelos Biológicos , Comportamento Predatório/fisiologia , Telemetria/métodos
7.
Proc Biol Sci ; 281(1782): 20132997, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24619440

RESUMO

The decisions animals make about how long to wait between activities can determine the success of diverse behaviours such as foraging, group formation or risk avoidance. Remarkably, for diverse animal species, including humans, spontaneous patterns of waiting times show random 'burstiness' that appears scale-invariant across a broad set of scales. However, a general theory linking this phenomenon across the animal kingdom currently lacks an ecological basis. Here, we demonstrate from tracking the activities of 15 sympatric predator species (cephalopods, sharks, skates and teleosts) under natural and controlled conditions that bursty waiting times are an intrinsic spontaneous behaviour well approximated by heavy-tailed (power-law) models over data ranges up to four orders of magnitude. Scaling exponents quantifying ratios of frequent short to rare very long waits are species-specific, being determined by traits such as foraging mode (active versus ambush predation), body size and prey preference. A stochastic-deterministic decision model reproduced the empirical waiting time scaling and species-specific exponents, indicating that apparently complex scaling can emerge from simple decisions. Results indicate temporal power-law scaling is a behavioural 'rule of thumb' that is tuned to species' ecological traits, implying a common pattern may have naturally evolved that optimizes move-wait decisions in less predictable natural environments.


Assuntos
Comportamento Alimentar , Modelos Biológicos , Atividade Motora , Comportamento Predatório , Animais , Oceano Atlântico , Cefalópodes , Ecossistema , Peixes , Probabilidade
8.
Nature ; 451(7182): 1098-102, 2008 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-18305542

RESUMO

Many free-ranging predators have to make foraging decisions with little, if any, knowledge of present resource distribution and availability. The optimal search strategy they should use to maximize encounter rates with prey in heterogeneous natural environments remains a largely unresolved issue in ecology. Lévy walks are specialized random walks giving rise to fractal movement trajectories that may represent an optimal solution for searching complex landscapes. However, the adaptive significance of this putative strategy in response to natural prey distributions remains untested. Here we analyse over a million movement displacements recorded from animal-attached electronic tags to show that diverse marine predators-sharks, bony fishes, sea turtles and penguins-exhibit Lévy-walk-like behaviour close to a theoretical optimum. Prey density distributions also display Lévy-like fractal patterns, suggesting response movements by predators to prey distributions. Simulations show that predators have higher encounter rates when adopting Lévy-type foraging in natural-like prey fields compared with purely random landscapes. This is consistent with the hypothesis that observed search patterns are adapted to observed statistical patterns of the landscape. This may explain why Lévy-like behaviour seems to be widespread among diverse organisms, from microbes to humans, as a 'rule' that evolved in response to patchy resource distributions.


Assuntos
Ecossistema , Comportamento Alimentar , Biologia Marinha , Modelos Biológicos , Atividade Motora , Comportamento Predatório , Animais , Euphausiacea , Fractais , Gadiformes , Oceanos e Mares , Densidade Demográfica , Probabilidade , Focas Verdadeiras , Tubarões , Spheniscidae , Atum , Tartarugas
9.
Proc Biol Sci ; 273(1591): 1195-201, 2006 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-16720391

RESUMO

Movements of wide-ranging top predators can now be studied effectively using satellite and archival telemetry. However, the motivations underlying movements remain difficult to determine because trajectories are seldom related to key biological gradients, such as changing prey distributions. Here, we use a dynamic prey landscape of zooplankton biomass in the north-east Atlantic Ocean to examine active habitat selection in the plankton-feeding basking shark Cetorhinus maximus. The relative success of shark searches across this landscape was examined by comparing prey biomass encountered by sharks with encounters by random-walk simulations of 'model' sharks. Movements of transmitter-tagged sharks monitored for 964 days (16754 km estimated minimum distance) were concentrated on the European continental shelf in areas characterized by high seasonal productivity and complex prey distributions. We show movements by adult and sub-adult sharks yielded consistently higher prey encounter rates than 90% of random-walk simulations. Behavioural patterns were consistent with basking sharks using search tactics structured across multiple scales to exploit the richest prey areas available in preferred habitats. Simple behavioural rules based on learned responses to previously encountered prey distributions may explain the high performances. This study highlights how dynamic prey landscapes enable active habitat selection in large predators to be investigated from a trophic perspective, an approach that may inform conservation by identifying critical habitat of vulnerable species.


Assuntos
Comportamento Predatório , Tubarões/fisiologia , Zooplâncton/fisiologia , Animais , Oceano Atlântico , Biomassa , Simulação por Computador , Meio Ambiente , Geografia , Modelos Biológicos , Telemetria
10.
Proc Biol Sci ; 271(1539): 655-61, 2004 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-15156925

RESUMO

Climatic change has been implicated as the cause of abundance fluctuations in marine fish populations worldwide, but the effects on whole communities are poorly understood. We examined the effects of regional climatic change on two fish assemblages using independent datasets from inshore marine (English Channel, 1913-2002) and estuarine environments (Bristol Channel, 1981-2001). Our results show that climatic change has had dramatic effects on community composition. Each assemblage contained a subset of dominant species whose abundances were strongly linked to annual mean sea-surface temperature. Species' latitudinal ranges were not good predictors of species-level responses, however, and the same species did not show congruent trends between sites. This suggests that within a region, populations of the same species may respond differently to climatic change, possibly owing to additional local environmental determinants, interspecific ecological interactions and dispersal capacity. This will make species-level responses difficult to predict within geographically differentiated communities.


Assuntos
Biodiversidade , Clima , Ecossistema , Monitoramento Ambiental , Peixes , Animais , Geografia , Análise de Componente Principal , Água do Mar , Temperatura , Reino Unido
11.
J Anim Ecol ; 75(1): 176-90, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16903055

RESUMO

1. Diel vertical migration (DVM) is a widespread phenomenon among marine and freshwater organisms and many studies with various taxa have sought to understand its adaptive significance. Among crustacean zooplankton and juveniles of some fish species DVM is accepted widely as an antipredator behaviour, but little is known about its adaptive value for relatively large-bodied, adult predatory fish such as sharks. Moreover, the majority of studies have focused on pelagic forms, which raises the question of whether DVM occurs in bottom-living predators. 2. To investigate DVM in benthic predatory fish in the marine environment and to determine why it might occur we tracked movements of adult male dogfish (Scyliorhinus canicula) by short- and long-term acoustic and archival telemetry. Movement studies were complemented with measurements of prey abundance and availability and thermal habitat within home ranges. A thermal choice experiment and energy budget modelling was used to investigate trade-offs between foraging and thermal habitat selection. 3. Male dogfish undertook normal DVM (nocturnal ascent) within relatively small home ranges (-100 x 100 m) comprising along-bottom movements up submarine slopes from deeper, colder waters occupied during the day into warmer, shallow prey-rich areas above the thermocline at night. Few daytime vertical movements occurred. Levels of activity were higher during the night above the thermocline compared to below it during the day indicating they foraged in warm water and rested in colder depths. 4. A thermal choice experiment using environmentally realistic temperatures supported the field observation that dogfish positively avoided warmer water even when it was associated with greater food availability. Males in laboratory aquaria moved into warm water from a cooler refuge only to obtain food, and after food consumption they preferred to rest and digest in cooler water. 5. Modelling of energy budgets under different realistic thermal-choice scenarios indicated dogfish adopting a 'hunt warm - rest cool' strategy could lower daily energy costs by just over 4%. Our results provide the first clear evidence that are consistent with the hypothesis that a benthic marine-fish predator utilizes DVM as an energy conservation strategy that increases bioenergetic efficiency.


Assuntos
Cação (Peixe)/fisiologia , Metabolismo Energético/fisiologia , Locomoção/fisiologia , Comportamento Predatório/fisiologia , Temperatura , Animais , Cação (Peixe)/metabolismo , Masculino , Oceanos e Mares , Telemetria/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA