Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 27(Pt 5): 1240-1246, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876599

RESUMO

X-ray magnetic circular dichroism (XMCD) is a technique commonly used to probe magnetic properties of materials with element and orbital selectivity, which requires the use of circularly polarized (CP) X-rays. It is possible to accomplish XMCD experiments with fixed CP and alternating the magnetic field orientation, but most reliable data are obtained when alternating the magnetization orientation and the polarization between right and left helicities. A versatile strategy has been developed to perform XMCD experiments using a hard X-ray quarter-wave plate, at both polychromatic dispersive and conventional monochromatic optics, in combination with synchronous data acquisition. The switching frequency waveform is fed into a lock-in amplifier to detect and amplify the XMCD signal. The results on a reference sample demonstrate an improvement in data quality and acquisition time. The instrumentation successfully generated 98% of CP X-rays switching the beam helicity at 13 Hz, with the possibility of faster helicity switching once it is installed at the new Brazilian fourth-generation source, SIRIUS.

2.
J Synchrotron Radiat ; 17(1): 93-102, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20029117

RESUMO

An energy-dispersive X-ray absorption spectroscopy beamline mainly dedicated to X-ray magnetic circular dichroism (XMCD) and material science under extreme conditions has been implemented in a bending-magnet port at the Brazilian Synchrotron Light Laboratory. Here the beamline technical characteristics are described, including the most important aspects of the mechanics, optical elements and detection set-up. The beamline performance is then illustrated through two case studies on strongly correlated transition metal oxides: an XMCD insight into the modifications of the magnetic properties of Cr-doped manganites and the structural deformation in nickel perovskites under high applied pressure.


Assuntos
Metais/química , Óxidos/química , Síncrotrons , Espectroscopia por Absorção de Raios X/métodos , Argentina , Transferência de Energia , Estatística como Assunto
3.
Sci Rep ; 5: 11812, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26149413

RESUMO

Rapid variations of the environmental energy caused by ultrashort laser pulses have induced phase transitions in carbon allotropes, therefore bringing the promise of revealing new carbon phases. Here, by exposing polycrystalline graphite to 25 fs laser pulses at 4 J/cm(2) fluence under standard air atmosphere, we demonstrated the synthesis of translucent micrometer-sized structures carrying diamond-like and onion-like carbon phases. Texturized domains of the diamond phase were also identified. Concerning different synthesized carbon forms, pulse superposition and singularities of the thermodynamical process, we pinpoint the synthesis mechanism by the laser-induced subsequent products energetically evolving to attain the diamond-like phase.

4.
Phys Rev Lett ; 102(5): 057206, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19257546

RESUMO

The pressure- and anion-dependent electronic structure of EuX (X=Te, Se, S, O) monochalcogenides is probed with element- and orbital-specific x-ray absorption spectroscopy in a diamond anvil cell. An isotropic lattice contraction enhances the ferromagnetic ordering temperature by inducing mixing of Eu 4f and 5d electronic orbitals. Anion substitution (Te-->O) enhances competing exchange pathways through spin-polarized anion p states, counteracting the effect of the concomitant lattice contraction. The results have strong implications for efforts aimed at enhancing FM exchange interactions in thin films through interfacial strain or chemical substitutions.

5.
J Synchrotron Radiat ; 12(Pt 2): 168-76, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15728969

RESUMO

The remarkable polarization properties of synchrotron light have lead to the advent of modern synchrotron-related spectroscopic studies with angular and/or magnetic selectivity. Here an overview is given of the prominent aspects of the polarization of the light delivered by a bending magnet, and some dichroic properties in X-ray absorption spectroscopy (XAS). Two studies developed at the Brazilian Synchrotron Light Laboratory are then reported, exemplifying the profit gained using linear and circular polarization of X-rays for the study of magnetic thin films and multilayers. Angle-resolved XAS was used in strained manganite thin films to certify a model of local distortion limited within the MnO6 polyhedron. A pioneering experience of X-ray magnetic scattering at grazing incidence associated with dispersive XAS in a Co/Gd multilayer draws new perspectives for magnetic studies in thin films and multilayers under atmospheric conditions in the hard X-ray range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA