Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 26(5): 439-44, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22391448

RESUMO

Although the polycomb group protein Enhancer of Zeste Homolog 2 (EZH2) is well recognized for its role as a key regulator of cell differentiation, its involvement in tissue regeneration is largely unknown. Here we show that EZH2 is up-regulated following cerulein-induced pancreatic injury and is required for tissue repair by promoting the regenerative proliferation of progenitor cells. Loss of EZH2 results in impaired pancreatic regeneration and accelerates KRas(G12D)-driven neoplasia. Our findings implicate EZH2 in constraining neoplastic progression through homeostatic mechanisms that control pancreatic regeneration and provide insights into the documented link between chronic pancreatic injury and an increased risk for pancreatic cancer.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Pâncreas/fisiologia , Regeneração/fisiologia , Fatores de Transcrição/metabolismo , Amilases/genética , Animais , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteína Potenciadora do Homólogo 2 de Zeste , Regulação da Expressão Gênica , Humanos , Camundongos , Pâncreas/citologia , Pâncreas/lesões , Complexo Repressor Polycomb 2 , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
2.
Nature ; 497(7451): 633-7, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23665962

RESUMO

Macropinocytosis is a highly conserved endocytic process by which extracellular fluid and its contents are internalized into cells through large, heterogeneous vesicles known as macropinosomes. Oncogenic Ras proteins have been shown to stimulate macropinocytosis but the functional contribution of this uptake mechanism to the transformed phenotype remains unknown. Here we show that Ras-transformed cells use macropinocytosis to transport extracellular protein into the cell. The internalized protein undergoes proteolytic degradation, yielding amino acids including glutamine that can enter central carbon metabolism. Accordingly, the dependence of Ras-transformed cells on free extracellular glutamine for growth can be suppressed by the macropinocytic uptake of protein. Consistent with macropinocytosis representing an important route of nutrient uptake in tumours, its pharmacological inhibition compromises the growth of Ras-transformed pancreatic tumour xenografts. These results identify macropinocytosis as a mechanism by which cancer cells support their unique metabolic needs and point to the possible exploitation of this process in the design of anticancer therapies.


Assuntos
Aminoácidos/metabolismo , Transformação Celular Neoplásica , Proteína Oncogênica p21(ras)/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Pinocitose , Animais , Transporte Biológico , Carbono/metabolismo , Linhagem Celular Transformada , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Feminino , Glutamina/metabolismo , Camundongos , Camundongos Nus , Células NIH 3T3 , Proteína Oncogênica p21(ras)/genética , Neoplasias Pancreáticas/genética , Proteólise
3.
Biophys J ; 112(9): 1797-1806, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28494951

RESUMO

The N-terminal domain of L9 (NTL9) is a 56-residue mixed α-ß protein that lacks disulfides, does not bind cofactors, and folds reversibly. NTL9 has been widely used as a model system for experimental and computational studies of protein folding and for investigations of the unfolded state. The role of side-chain interactions in the folding of NTL9 is probed by mutational analysis. ϕ-values, which represent the ratio of the change in the log of the folding rate upon mutation to the change in the log of the equilibrium constant for folding, are reported for 25 point mutations and 15 double mutants. All ϕ-values are small, with an average over all sites probed of only 0.19 and a largest value of 0.4. The effect of modulating unfolded-state interactions is studied by measuring ϕ-values in second- site mutants and under solvent conditions that perturb unfolded-state energetics in a defined way. Neither of these alterations significantly affects the distribution of ϕ-values. The results, combined with those of earlier studies that probe the role of hydrogen-bond formation in folding and the burial of surface area, reveal that the transition state for folding contains extensive backbone structure and buries a significant fraction of hydrophobic surface area, but lacks well developed side-chain-side-chain interactions. The folding transition state for NTL9 does not contain a specific "nucleus" consisting of a few key residues; rather, it involves extensive backbone hydrogen bonding and partially formed structure delocalized over almost the entire domain. The potential generality of these observations is discussed.


Assuntos
Dobramento de Proteína , Proteínas Ribossômicas/metabolismo , Sequência de Aminoácidos , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Mutação , Estrutura Secundária de Proteína , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA