Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38857123

RESUMO

A transfer function approach was recently demonstrated to mitigate data mismatches at the acquisition level for a single ultrasound scanner in deep learning (DL)-based quantitative ultrasound (QUS). As a natural progression, we further investigate the transfer function approach and introduce a machine-to-machine (M2M) transfer function, which possesses the ability to mitigate data mismatches at a machine level. This ability opens the door to unprecedented opportunities for reducing DL model development costs, enabling the combination of data from multiple sources or scanners, or facilitating the transfer of DL models between machines. We tested the proposed method utilizing a SonixOne machine and a Verasonics machine with an L9-4 array and an L11-5 array. We conducted two types of acquisitions to obtain calibration data: stable and free-hand, using two different calibration phantoms. Without the proposed method, the mean classification accuracy when applying a model on data acquired from one system to data acquired from another system was 50%, and the mean average area under the receiver operator characteristic (ROC) curve (AUC) was 0.405. With the proposed method, mean accuracy increased to 99%, and the AUC rose to the 0.999. Additional observations include the choice of the calibration phantom led to statistically significant changes in the performance of the proposed method. Moreover, robust implementation inspired by Wiener filtering provided an effective method for transferring the domain from one machine to another machine, and it can succeed using just a single calibration view. Lastly, the proposed method proved effective when a different transducer was used in the test machine.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37030869

RESUMO

Deep learning (DL) can fail when there are data mismatches between training and testing data distributions. Due to its operator-dependent nature, acquisition-related data mismatches, caused by different scanner settings, can occur in ultrasound imaging. As a result, it is crucial to mitigate the effects of these mismatches to enable wider clinical adoption of DL-powered ultrasound imaging and tissue characterization. To address this challenge, we propose an inexpensive and generalizable method that involves collecting a large training set at a single setting and a small calibration set at each scanner setting. Then, the calibration set will be used to calibrate data mismatches by using a signals and systems perspective. We tested the proposed solution to classify two phantoms using an L9-4 array connected to a SonixOne scanner. To investigate generalizability of the proposed solution, we calibrated three types of data mismatches: pulse frequency mismatch, focus mismatch, and output power mismatch. Two well-known convolutional neural networks (CNNs), i.e., ResNet-50 and DenseNet-201, were trained using the ultrasound radio frequency (RF) data. To calibrate the setting mismatches, we calculated the setting transfer functions. The CNNs trained without calibration resulted in mean classification accuracies of around 52%, 84%, and 85% for pulse frequency, focus, and output power mismatches, respectively. By using the setting transfer functions, which allowed a matching of the training and testing domains, we obtained the mean accuracies of 96%, 96%, and 98%, respectively. Therefore, the incorporation of the setting transfer functions between scanner settings can provide an economical means of generalizing a DL model for specific classification tasks where scanner settings are not fixed by the operator.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Ultrassonografia , Calibragem
3.
Artigo em Inglês | MEDLINE | ID: mdl-37027531

RESUMO

Deep learning (DL) powered biomedical ultrasound imaging is an emerging research field where researchers adapt the image analysis capabilities of DL algorithms to biomedical ultrasound imaging settings. A major roadblock to wider adoption of DL powered biomedical ultrasound imaging is that acquisition of large and diverse datasets is expensive in clinical settings, which is a requirement for successful DL implementation. Hence, there is a constant need for developing data-efficient DL techniques to turn DL powered biomedical ultrasound imaging into reality. In this work, we develop a data-efficient DL training strategy for classifying tissues based on the ultrasonic backscattered RF data, i.e., quantitative ultrasound (QUS), which we named zone training. In zone training, we propose to divide the complete field of view of an ultrasound image into multiple zones associated with different regions of a diffraction pattern and then, train separate DL networks for each zone. The main advantage of zone training is that it requires less training data to achieve high accuracy. In this work, three different tissue-mimicking phantoms were classified by a DL network. The results demonstrated that zone training can require a factor of 2-3 less training data in low data regime to achieve similar classification accuracies compared to a conventional training strategy.


Assuntos
Aprendizado Profundo , Algoritmos , Ultrassonografia , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA