Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36613911

RESUMO

Various metals have been associated with the pathogenesis of Alzheimer's disease (AD), principally heavy metals that are environmental pollutants (such as As, Cd, Hg, and Pb) and essential metals whose homeostasis is disturbed in AD (such as Cu, Fe, and Zn). Although there is evidence of the involvement of these metals in AD, further research is needed on their mechanisms of toxicity. To further assess the involvement of heavy and essential metals in AD pathogenesis, we compared cerebrospinal fluid (CSF) AD biomarkers to macro- and microelements measured in CSF and plasma. We tested if macro- and microelements' concentrations (heavy metals (As, Cd, Hg, Ni, Pb, and Tl), essential metals (Na, Mg, K, Ca, Fe, Co, Mn, Cu, Zn, and Mo), essential non-metals (B, P, S, and Se), and other non-essential metals (Al, Ba, Li, and Sr)) are associated with CSF AD biomarkers that reflect pathological changes in the AD brain (amyloid ß1-42, total tau, phosphorylated tau isoforms, NFL, S100B, VILIP-1, YKL-40, PAPP-A, and albumin). We used inductively coupled plasma mass spectroscopy (ICP-MS) to determine macro- and microelements in CSF and plasma, and enzyme-linked immunosorbent assays (ELISA) to determine protein biomarkers of AD in CSF. This study included 193 participants (124 with AD, 50 with mild cognitive impairment, and 19 healthy controls). Simple correlation, as well as machine learning algorithms (redescription mining and principal component analysis (PCA)), demonstrated that levels of heavy metals (As, Cd, Hg, Ni, Pb, and Tl), essential metals (Ca, Co, Cu, Fe, Mg, Mn, Mo, Na, K, and Zn), and essential non-metals (P, S, and Se) are positively associated with CSF phosphorylated tau isoforms, VILIP-1, S100B, NFL, and YKL-40 in AD.


Assuntos
Doença de Alzheimer , Mercúrio , Metais Pesados , Humanos , Proteína 1 Semelhante à Quitinase-3 , Doença de Alzheimer/líquido cefalorraquidiano , Cádmio , Peptídeos beta-Amiloides , Chumbo , Metais Pesados/metabolismo , Biomarcadores/líquido cefalorraquidiano
2.
Cells ; 11(14)2022 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-35883667

RESUMO

Neuroinflammation is one of the core pathological features of Alzheimer's disease (AD) as both amyloid ß (Aß) and tau monomers and oligomers can trigger the long-term pro-inflammatory phenotype of microglial cells with consequent overactivation of the inflammasomes. To investigate the NLRP1 inflammasome activation in AD, we analyzed the expression of NLRP1, ASC, cleaved gasdermin (cGSDMD), and active caspase-6 (CASP-6) proteins in each hippocampal subdivision (hilar part of CA3, CA2/3, CA1, subiculum) of postmortem tissue of 9 cognitively healthy controls (HC) and 11 AD patients whose disease duration varied from 3 to 7 years after the clinical diagnosis. The total number of neurons, along with the total number of neurofibrillary tangles (NFTs), were estimated in Nissl- and adjacent modified Bielschowsky-stained sections, respectively, using the optical disector method. The same 9 HC and 11 AD cases were additionally semiquantitatively analyzed for expression of IBA1, HLA-DR, and CD68 microglial markers. Our results show that the expression of NLRP1, ASC, and CASP-6 is present in a significantly greater number of hippocampal formation neurons in AD brains compared to controls, suggesting that the NLRP1 inflammasome is more active in the AD brain. None of the investigated inflammasome and microglial markers were found to correlate with the age of the subjects or the duration of AD. However, besides positive correlations with microglial IBA1 expression in the subiculum and with microglial CD68 expression in the CA1 field and subiculum in the AD group, the overall NLRP1 expression in the hippocampal formation was positively correlated with the number of NFTs, thus providing a causal link between neuroinflammation and neurofibrillary degeneration. The accumulation of AT8-immunoreactive phosphorylated tau proteins that we observed at nuclear pores of large pyramidal neurons of the Ammon's horn further supports their role in the extent of neuronal dysfunction and degeneration in AD. This is important because unlike fibrillar amyloid-ß deposits that are not related to dementia severity, total NFTs and neuron numbers in the hippocampal formation, especially in the CA1 field, are the best correlates of cognitive deterioration in both human brain aging and AD. Our findings also support the notion that the CA2 field vulnerability is strongly linked to specific susceptibilities to different tauopathies, including primary age-related tauopathy. Altogether, these findings contrast with reports of nonsignificant microglial activation in aged nonhuman primates and indicate that susceptibility to inflammasome activation may render the human brain comparatively more vulnerable to neurodegenerative changes and AD. In conclusion, our results confirm a key role of NLRP1 inflammasome in AD pathogenesis and suggest NLRP1 as a potential diagnostic marker and therapeutic target to slow or prevent AD progression.


Assuntos
Doença de Alzheimer , Inflamassomos , Idoso , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Hipocampo/metabolismo , Humanos , Inflamassomos/metabolismo , Microglia/metabolismo , Proteínas NLR/metabolismo
3.
CNS Neurosci Ther ; 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513962

RESUMO

AIMS: Considering the substantial variability in treatment response across patients with spinal muscular atrophy (SMA), reliable markers for monitoring response to therapy and predicting treatment responders need to be identified. The study aimed to determine if measured concentrations of disease biomarkers (total tau protein, neurofilament light chain, and S100B protein) correlate with the duration of nusinersen treatment and with scores obtained using functional scales for the assessment of motor abilities. METHODS: A total of 30 subjects with SMA treated with nusinersen between 2017 and 2021 at the Department of Pediatrics, University Hospital Centre Zagreb, Croatia, were included in this study. Cerebrospinal fluid (CSF) samples were collected by lumbar puncture prior to intrathecal application of nusinersen. Protein concentrations in CSF samples were determined by enzyme-linked immunosorbent assay in 26 subjects. The motor functions were assessed using functional motor scales. RESULTS: The main finding was significantly decreased total tau correlating with the number of nusinersen doses and motor improvement in the first 18-24 months of treatment (in all SMA patients and SMA type 1 patients). Neurofilament light chain and S100B were not significantly changed after administration of nusinersen. CONCLUSIONS: The measurement of total tau concentration in CSF is a reliable index for monitoring the biomarker and clinical response to nusinersen therapy in patients with SMA.

4.
Biomedicines ; 10(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36551873

RESUMO

A decrease in serotonergic transmission throughout the brain is among the earliest pathological changes in Alzheimer's disease (AD). Serotonergic receptors are also affected in AD. Polymorphisms in genes of serotonin (5HT) receptors have been mostly associated with behavioral and psychological symptoms of dementia (BPSD). In this study, we examined if AD patients carrying different genotypes in 5HTR1B rs13212041, 5HTR2A rs6313 (T102C), 5HTR2C rs3813929 (-759C/T), and 5HTR6 rs1805054 (C267T) polymorphisms have a higher risk of faster disease progression (assessed by neuropsychological testing), are more prone to develop AD-related pathology (reflected by levels of cerebrospinal fluid [CSF] AD biomarkers), or have an association with an apolipoprotein E (APOE) haplotype. This study included 115 patients with AD, 53 patients with mild cognitive impairment (MCI), and 2701 healthy controls. AD biomarkers were determined in the CSF of AD and MCI patients using enzyme-linked immunosorbent assays (ELISA), while polymorphisms were determined using either TaqMan SNP Genotyping Assays or Illumina genotyping platforms. We detected a significant decrease in the CSF amyloid ß1-42 (Aß1-42) and an increase in p-tau181/Aß1-42 ratio in carriers of the T allele in the 5HTR2C rs3813929 (-759C/T) polymorphism. A significantly higher number of APOE ε4 allele carriers was observed among individuals carrying a TT genotype within the 5HTR2A T102C polymorphism, a C allele within the 5HTR1B rs13212041 polymorphism, and a T allele within the 5HTR6 rs1805054 (C267T) polymorphism. Additionally, individuals carrying the C allele within the 5HTR1B rs13212041 polymorphism were significantly more represented among AD patients and had poorer performances on the Rey-Osterrieth test. Carriers of the T allele within the 5HTR6 rs1805054 had poorer performances on the MMSE and ADAS-Cog. As all four analyzed polymorphisms of serotonin receptor genes showed an association with either genetic, CSF, or neuropsychological biomarkers of AD, they deserve further investigation as potential early genetic biomarkers of AD.

5.
J Comp Neurol ; 530(15): 2711-2748, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35603771

RESUMO

Little is known about the development of the human entorhinal cortex (EC), a major hub in a widespread network for learning and memory, spatial navigation, high-order processing of object information, multimodal integration, attention and awareness, emotion, motivation, and perception of time. We analyzed a series of 20 fetal and two adult human brains using Nissl stain, acetylcholinesterase (AChE) histochemistry, and immunocytochemistry for myelin basic protein (MBP), neuronal nuclei antigen (NeuN), a pan-axonal neurofilament marker, and synaptophysin, as well as postmortem 3T MRI. In comparison with other parts of the cerebral cortex, the cytoarchitectural differentiation of the EC begins remarkably early, in the 10th week of gestation (w.g.). The differentiation occurs in a superficial magnocellular layer in the deep part of the marginal zone, accompanied by cortical plate (CP) condensation and multilayering of the deep part of CP. These processes last until the 13-14th w.g. At 14 w.g., the superficial lamina dissecans (LD) is visible, which divides the CP into the lamina principalis externa (LPE) and interna (LPI). Simultaneously, the rostral LPE separates into vertical cell-dense islands, whereas in the LPI, the deep LD emerges as a clear acellular layer. In the 16th w.g., the LPE remodels into vertical cell-dense and cell-sparse zones with a caudorostral gradient. At 20 w.g., NeuN immunoreactivity is most pronounced in the islands of layer II cells, whereas migration and differentiation inside-out gradients are seen simultaneously in both the upper (LPE) and the lower (LPI) pyramidal layers. At this stage, the EC adopts for the first time an adult-like cytoarchitectural organization, the superficial LD becomes discernible by 3T MRI, MBP-expressing oligodendrocytes first appear in the fimbria and the perforant path (PP) penetrates the subiculum to reach its molecular layer and travels along through the Cornu Ammonis fields to reach the suprapyramidal blade of the dentate gyrus, whereas the entorhinal-dentate branch perforates the hippocampal sulcus about 2-3 weeks later. The first AChE reactivity appears as longitudinal stripes at 23 w.g. in layers I and II of the rostrolateral EC and then also as AChE-positive in-growing fibers in islands of superficial layer III and layer II neurons. At 40 w.g., myelination of the PP starts as patchy MBP-immunoreactive oligodendrocytes and their processes. Our results refute the possibility of an inside-out pattern of the EC development and support the key role of layer II prospective stellate cells in the EC lamination. As the early cytoarchitectural differentiation of the EC is paralleled by the neurochemical development, these developmental milestones in EC structure and connectivity have implications for understanding its normal function, including its puzzling modular organization and potential contribution to consciousness content (awareness), as well as for its insufficiently explored deficits in developmental, psychiatric, and degenerative brain disorders.


Assuntos
Acetilcolinesterase , Córtex Entorrinal , Desenvolvimento Fetal , Acetilcolinesterase/metabolismo , Adulto , Córtex Entorrinal/crescimento & desenvolvimento , Feminino , Feto , Hipocampo/crescimento & desenvolvimento , Humanos , Neurônios/metabolismo , Gravidez , Estudos Prospectivos
6.
Biomolecules ; 11(6)2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072960

RESUMO

Emotions arise from activations of specialized neuronal populations in several parts of the cerebral cortex, notably the anterior cingulate, insula, ventromedial prefrontal, and subcortical structures, such as the amygdala, ventral striatum, putamen, caudate nucleus, and ventral tegmental area. Feelings are conscious, emotional experiences of these activations that contribute to neuronal networks mediating thoughts, language, and behavior, thus enhancing the ability to predict, learn, and reappraise stimuli and situations in the environment based on previous experiences. Contemporary theories of emotion converge around the key role of the amygdala as the central subcortical emotional brain structure that constantly evaluates and integrates a variety of sensory information from the surroundings and assigns them appropriate values of emotional dimensions, such as valence, intensity, and approachability. The amygdala participates in the regulation of autonomic and endocrine functions, decision-making and adaptations of instinctive and motivational behaviors to changes in the environment through implicit associative learning, changes in short- and long-term synaptic plasticity, and activation of the fight-or-flight response via efferent projections from its central nucleus to cortical and subcortical structures.


Assuntos
Tonsila do Cerebelo/fisiologia , Emoções/fisiologia , Humanos
7.
J Alzheimers Dis ; 82(2): 661-672, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34057084

RESUMO

BACKGROUND: The major confirmed genetic risk factor for late-onset, sporadic Alzheimer's disease (AD) is variant ɛ4 of apolipoprotein E gene (APOE). It is proposed that ApoE, a protein involved in transport of cholesterol to neurons can cause neurodegeneration in AD through interaction with metals. Previous studies mostly associated copper, iron, zinc, and calcium with ApoE4-mediated toxicity. OBJECTIVE: To test the association of essential metals with APOE genotype. METHODS: We compared plasma and cerebrospinal fluid (CSF) levels of copper, zinc, iron, sodium, magnesium, calcium, cobalt, molybdenum, manganese, boron, and chromium, and CSF ferritin levels among AD, mild cognitive impairment (MCI) patients, and healthy controls (HC) with different APOE genotype. RESULTS: Sodium, copper, and magnesium levels were increased in carriers of ɛ4 allele. Additionally, the increase in sodium, calcium and cobalt plasma levels was observed in carriers of ɛ4/ɛx genotype. The decrease in boron plasma levels was observed in carriers of ɛ4 allele and ɛ4/ɛ4 genotype. Additionally, CSF zinc levels as well as plasma sodium levels were increased in AD patients compared to HC. CONCLUSION: These results indicate that the molecular underpinnings of association of essential metals and metalloids with APOE should be further tested and clarified in vivo and in vitro.


Assuntos
Doença de Alzheimer , Apolipoproteína E4/genética , Metaloides , Metais , Sódio/sangue , Zinco/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/genética , Apolipoproteínas E , Transporte Biológico/fisiologia , Colesterol/metabolismo , Disfunção Cognitiva/sangue , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Correlação de Dados , Feminino , Ferritinas/líquido cefalorraquidiano , Genótipo , Humanos , Masculino , Metaloides/sangue , Metaloides/líquido cefalorraquidiano , Metais/sangue , Metais/líquido cefalorraquidiano , Metais/classificação
8.
Prog Mol Biol Transl Sci ; 168: 99-145, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31699331

RESUMO

The pathogenesis of Alzheimer's disease (AD) is only partly understood. This is the probable reason why significant efforts to treat or prevent AD have been unsuccessful. In fact, as of April 2019, there have been 2094 studies registered for AD on the clinicaltrials.gov U.S. National Library of Science web page, of which only a few are still ongoing. In AD, abnormal accumulation of amyloid and tau proteins in the brain are thought to begin 10-20 years before the onset of overt symptoms, suggesting that interventions designed to prevent pathological amyloid and tau accumulation may be more effective than attempting to reverse a pathology once it is established. However, to be successful, such early interventions need to be selectively administered to individuals who will likely develop the disease long before the symptoms occur. Therefore, it is critical to identify early biomarkers that are strongly predictive of AD. Currently, patients are diagnosed on the basis of a variety of clinical scales, neuropsychological tests, imaging and laboratory modalities, but definitive diagnosis can be made only by postmortem assessment of underlying neuropathology. People suffering from AD thus may be misdiagnosed clinically with other primary causes of dementia, and vice versa, thereby also reducing the power of clinical trials. The amyloid cascade hypothesis fits well for the familial cases of AD with known mutations, but is not sufficient to explain sporadic, late-onset AD (LOAD) that accounts for over 95% of all cases. Since the earliest descriptions of AD there have been neuropathological features described other than amyloid plaques (AP) and neurofibrillary tangles (NFT), most notably gliosis and neuroinflammation. However, it is only recently that genetic and experimental studies have implicated microglial dysfunction as a causal factor for AD, as opposed to a merely biological response of its accumulation around AP. Additionally, many studies have suggested the importance of changes in blood-brain barrier (BBB) permeability in the pathogenesis of AD. Here we suggest how these less investigated aspects of the disease that have gained increased attention in recent years may contribute mechanistically to the development of lesions and symptoms of AD.


Assuntos
Doença de Alzheimer/patologia , Barreira Hematoencefálica/patologia , Imunidade Inata/imunologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/imunologia , Animais , Humanos
9.
Front Aging Neurosci ; 11: 271, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636558

RESUMO

Uncontrolled immune response in the brain contributes to the progression of all neurodegenerative disease, including Alzheimer's disease (AD). Recent investigations have documented the prion-like features of tau protein and the involvement of microglial changes with tau pathology. While it is still unclear what sequence of events is causal, it is likely that tau seeding potential and microglial contribution to tau propagation act together, and are essential for the development and progression of degenerative changes. Based on available evidence, targeting tau seeds and controlling some signaling pathways in a complex inflammation process could represent a possible new therapeutic approach for treating neurodegenerative diseases. Recent findings propose novel diagnostic assays and markers that may be used together with standard methods to complete and improve the diagnosis and classification of these diseases. In conclusion, a novel perspective on microglia-tau relations reveals new issues to investigate and imposes different approaches for developing therapeutic strategies for AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA