RESUMO
Sugar beet (Beta vulgaris) is grown in temperate regions around the world as a source of sucrose used for natural sweetening. Sugar beet is susceptible to a number of viral diseases, but identification of the causal agent(s) under field conditions is often difficult due to mixtures of viruses that may be responsible for disease symptoms. In this study, the application of RNAseq to RNA extracted from diseased sugar beet roots obtained from the field and from greenhouse-reared plants grown in soil infested with the virus disease rhizomania (causal agent beet necrotic yellow vein virus; BNYVV) yielded genome-length sequences from BNYVV, as well as beet soil-borne virus (BSBV). The nucleotide identities of the derived consensus sequence of BSBV RNAs ranged from 99.4 to 96.7% (RNA1), 99.3 to 95.3% (RNA2), and 98.3 to 95.9% (RNA3) compared with published BSBV sequences. Based on the BSBV genome consensus sequence, clones of the genomic RNAs 1, 2, and 3 were obtained to produce RNA copies of the genome through in vitro transcription. Capped RNA produced from the clones was infectious when inoculated into leaves of Chenopodium quinoa and B. vulgaris, and extracts from transcript-infected C. quinoa leaves could infect sugar beet seedling roots through a vortex inoculation method. Subsequent exposure of these infected sugar beet seedling roots to aviruliferous Polymyxa betae, the protist vector of both BNYVV and BSBV, confirmed that BSBV derived from the infectious clones could be transmitted by the vector. Co-inoculation of BSBV synthetic transcripts with transcripts of a cloned putative satellite virus designated Beta vulgaris satellite virus 1A (BvSat1A) resulted in the production of lesions on leaves of C. quinoa similar to those produced by inoculation with BSBV alone. Nevertheless, accumulation of genomic RNA and the encoded protein of the satellite virus in co-inoculated leaves was readily detected on Northern and Western blots, respectively, whereas no accumulation of satellite virus products occurred when satellite virus RNA was inoculated alone. The predicted sequence of the detected protein encoded by BvSat1A bears hallmarks of coat proteins of other satellite viruses, and virions of a size consistent with a satellite virus were observed in samples testing positive for the virus. The results demonstrate that BSBV is a helper virus for the novel satellite virus BvSat1A.
Assuntos
Beta vulgaris , Doenças das Plantas , Vírus de Plantas , Vírus Satélites , Beta vulgaris/virologia , Doenças das Plantas/virologia , Vírus Satélites/genética , Vírus Satélites/fisiologia , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Vírus Auxiliares/genética , Vírus Auxiliares/fisiologia , RNA Viral/genética , Raízes de Plantas/virologia , Genoma Viral/genética , Microbiologia do SoloRESUMO
Cercospora leaf spot (CLS) is a globally important disease of sugar beet (Beta vulgaris) caused by the fungus Cercospora beticola. Long-distance movement of C. beticola has been indirectly evidenced in recent population genetic studies, suggesting potential dispersal via seed. Commercial sugar beet "seed" consists of the reproductive fruit (true seed surrounded by maternal pericarp tissue) coated in artificial pellet material. In this study, we confirmed the presence of viable C. beticola in sugar beet fruit for 10 of 37 tested seed lots. All isolates harbored the G143A mutation associated with quinone outside inhibitor resistance, and 32 of 38 isolates had reduced demethylation inhibitor sensitivity (EC50 > 1 µg/ml). Planting of commercial sugar beet seed demonstrated the ability of seedborne inoculum to initiate CLS in sugar beet. C. beticola DNA was detected in DNA isolated from xylem sap, suggesting the vascular system is used to systemically colonize the host. We established nuclear ribosomal internal transcribed spacer region amplicon sequencing using the MinION platform to detect fungi in sugar beet fruit. Fungal sequences from 19 different genera were identified from 11 different sugar beet seed lots, but Fusarium, Alternaria, and Cercospora were consistently the three most dominant taxa, comprising an average of 93% relative read abundance over 11 seed lots. We also present evidence that C. beticola resides in the pericarp of sugar beet fruit rather than the true seed. The presence of seedborne inoculum should be considered when implementing integrated disease management strategies for CLS of sugar beet in the future.
Assuntos
Beta vulgaris , Cercospora , Beta vulgaris/microbiologia , Frutas , Doenças das Plantas/microbiologia , Açúcares , VerdurasRESUMO
Multilayered defense responses ensure that plants are hosts to only a few adapted pathogens in the environment. The host range of a plant pathogen depends on its ability to fully overcome plant defense barriers, with failure at any single step sufficient to prevent life cycle completion of the pathogen. Puccinia striiformis, the causal agent of stripe rust (=yellow rust), is an agronomically important obligate biotrophic fungal pathogen of wheat and barley. It is generally unable to complete its life cycle on the non-adapted wild grass species Brachypodium distachyon, but natural variation exists for the degree of hyphal colonization by Puccinia striiformis. Using three B. distachyon mapping populations, we identified genetic loci conferring colonization resistance to wheat-adapted and barley-adapted isolates of P. striiformis. We observed a genetic architecture composed of two major effect QTLs (Yrr1 and Yrr3) restricting the colonization of P. striiformis. Isolate specificity was observed for Yrr1, whereas Yrr3 was effective against all tested P. striiformis isolates. Plant immune receptors of the nucleotide binding, leucine-rich repeat (NB-LRR) encoding gene family are present at the Yrr3 locus, whereas genes of this family were not identified at the Yrr1 locus. While it has been proposed that resistance to adapted and non-adapted pathogens are inherently different, the observation of (1) a simple genetic architecture of colonization resistance, (2) isolate specificity of major and minor effect QTLs, and (3) NB-LRR encoding genes at the Yrr3 locus suggest that factors associated with resistance to adapted pathogens are also critical for non-adapted pathogens.
Assuntos
Basidiomycota/patogenicidade , Brachypodium/genética , Resistência à Doença/genética , Especificidade de Hospedeiro , Doenças das Plantas/genética , Brachypodium/imunologia , Brachypodium/microbiologia , Mapeamento Cromossômico , Hordeum/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Locos de Características Quantitativas/genética , Triticum/microbiologiaRESUMO
Species in the genus Cercospora cause economically devastating diseases in sugar beet, maize, rice, soy bean, and other major food crops. Here, we sequenced the genome of the sugar beet pathogen Cercospora beticola and found it encodes 63 putative secondary metabolite gene clusters, including the cercosporin toxin biosynthesis (CTB) cluster. We show that the CTB gene cluster has experienced multiple duplications and horizontal transfers across a spectrum of plant pathogenic fungi, including the wide-host range Colletotrichum genus as well as the rice pathogen Magnaporthe oryzae Although cercosporin biosynthesis has been thought to rely on an eight-gene CTB cluster, our phylogenomic analysis revealed gene collinearity adjacent to the established cluster in all CTB cluster-harboring species. We demonstrate that the CTB cluster is larger than previously recognized and includes cercosporin facilitator protein, previously shown to be involved with cercosporin autoresistance, and four additional genes required for cercosporin biosynthesis, including the final pathway enzymes that install the unusual cercosporin methylenedioxy bridge. Lastly, we demonstrate production of cercosporin by Colletotrichum fioriniae, the first known cercosporin producer within this agriculturally important genus. Thus, our results provide insight into the intricate evolution and biology of a toxin critical to agriculture and broaden the production of cercosporin to another fungal genus containing many plant pathogens of important crops worldwide.
Assuntos
Colletotrichum/genética , Genes Fúngicos/genética , Família Multigênica/genética , Perileno/análogos & derivados , DNA Fúngico/genética , Proteínas Fúngicas/genética , Malus/microbiologia , Perileno/metabolismo , Doenças das Plantas/microbiologiaRESUMO
Cercospora leaf spot (CLS), caused by the fungal pathogen Cercospora beticola, is the most destructive disease of sugar beet worldwide. Although growing CLS-tolerant varieties is helpful, disease management currently requires timely application of fungicides. However, overreliance on fungicides has led to the emergence of fungicide resistance in many C. beticola populations, resulting in multiple epidemics in recent years. Therefore, this study focused on developing a fungicide resistance detection "toolbox" for early detection of C. beticola in sugar beet leaves and mutations associated with different fungicides in the pathogen population. A loop-mediated isothermal amplification (LAMP) method was developed for rapid detection of C. beticola in infected sugar beet leaves. The LAMP primers specific to C. beticola (Cb-LAMP) assay was able to detect C. beticola in inoculated sugar beet leaves as early as 1 day postinoculation. A quinone outside inhibitor (QoI)-LAMP assay was also developed to detect the G143A mutation in cytochrome b associated with QoI resistance in C. beticola. The assay detected the mutation in C. beticola both in vitro and in planta with 100% accuracy. We also developed a probe-based quantitative PCR (qPCR) assay for detecting an E198A mutation in ß-tubulin associated with benzimidazole resistance and a probe-based qPCR assay for detection of mutations in cytochrome P450-dependent sterol 14α-demethylase (Cyp51) associated with resistance to sterol demethylation inhibitor fungicides. The primers and probes used in the assay were highly efficient and precise in differentiating the corresponding fungicide-resistant mutants from sensitive wild-type isolates.
Assuntos
Ascomicetos , Beta vulgaris , Fungicidas Industriais , Mutação , AçúcaresRESUMO
Perylenequinones are a family of structurally related polyketide fungal toxins with nearly universal toxicity. These photosensitizing compounds absorb light energy which enables them to generate reactive oxygen species that damage host cells. This potent mechanism serves as an effective weapon for plant pathogens in disease or niche establishment. The sugar beet pathogen Cercospora beticola secretes the perylenequinone cercosporin during infection. We have shown recently that the cercosporin toxin biosynthesis (CTB) gene cluster is present in several other phytopathogenic fungi, prompting the search for biosynthetic gene clusters (BGCs) of structurally similar perylenequinones in other fungi. Here, we report the identification of the elsinochrome and phleichrome BGCs of Elsinoë fawcettii and Cladosporium phlei, respectively, based on gene cluster conservation with the CTB and hypocrellin BGCs. Furthermore, we show that previously reported BGCs for elsinochrome and phleichrome are involved in melanin production. Phylogenetic analysis of the corresponding melanin polyketide synthases (PKSs) and alignment of melanin BGCs revealed high conservation between the established and newly identified C. beticola, E. fawcettii and C. phlei melanin BGCs. Mutagenesis of the identified perylenequinone and melanin PKSs in C. beticola and E. fawcettii coupled with mass spectrometric metabolite analyses confirmed their roles in toxin and melanin production.
Assuntos
Ascomicetos/metabolismo , Cladosporium/metabolismo , Genes Fúngicos , Melaninas/biossíntese , Família Multigênica , Perileno/análogos & derivados , Quinonas/metabolismo , Ascomicetos/genética , Vias Biossintéticas , Cladosporium/genética , Micotoxinas/biossíntese , Perileno/metabolismo , Filogenia , Plantas/microbiologia , Policetídeo Sintases/metabolismoRESUMO
Among a set of genes in pea (Pisum sativum L.) that were induced under drought-stress growth conditions, one encoded a protein with significant similarity to a regulator of chlorophyll catabolism, SGR. This gene, SGRL, is distinct from SGR in genomic location, encoded carboxy-terminal motif, and expression through plant and seed development. Divergence of the two encoded proteins is associated with a loss of similarity in intron/exon gene structure. Transient expression of SGRL in leaves of Nicotiana benthamiana promoted the degradation of chlorophyll, in a manner that was distinct from that shown by SGR. Removal of a predicted transmembrane domain from SGRL reduced its activity in transient expression assays, although variants with and without this domain reduced SGR-induced chlorophyll degradation, indicating that the effects of the two proteins are not additive. The combined data suggest that the function of SGRL during growth and development is in chlorophyll re-cycling, and its mode of action is distinct from that of SGR. Studies of pea sgrL mutants revealed that plants had significantly lower stature and yield, a likely consequence of reduced photosynthetic efficiencies in mutant compared with control plants under conditions of high light intensity.
Assuntos
Clorofila/metabolismo , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dados de Sequência Molecular , Mutação , Pisum sativum/genética , Fotossíntese/genética , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Nicotiana/genética , Nicotiana/metabolismoRESUMO
Circadian clocks are important for an individual's fitness, and recent studies have underlined their role in the outcome of biological interactions. However, the relevance of circadian clocks in fungal-fungal interactions remains largely unexplored. We sought to characterize a functional clock in the biocontrol agent Trichoderma atroviride to assess its importance in the mycoparasitic interaction against the phytopathogen Botrytis cinerea. Thus, we confirmed the existence of circadian rhythms in T. atroviride, which are temperature-compensated and modulated by environmental cues such as light and temperature. Nevertheless, the presence of such molecular rhythms appears to be highly dependent on the nutritional composition of the media. Complementation of a clock null (Δfrq) Neurospora crassa strain with the T. atroviride-negative clock component (tafrq) restored core clock function, with the same period observed in the latter fungus, confirming the role of tafrq as a bona fide core clock component. Confrontation assays between wild-type and clock mutant strains of T. atroviride and B. cinerea, in constant light or darkness, revealed an inhibitory effect of light on T. atroviride's mycoparasitic capabilities. Interestingly, when confrontation assays were performed under light/dark cycles, T. atroviride's overgrowth capacity was enhanced when inoculations were at dawn compared to dusk. Deleting the core clock-negative element FRQ in B. cinerea, but not in T. atroviride, was vital for the daily differential phenotype, suggesting that the B. cinerea clock has a more significant influence on the result of this interaction. Additionally, we observed that T. atroviride clock components largely modulate development and secondary metabolism in this fungus, including the rhythmic production of distinct volatile organic compounds (VOCs). Thus, this study provides evidence on how clock components impact diverse aspects of T. atroviride lifestyle and how daily changes modulate fungal interactions and dynamics.
Assuntos
Botrytis , Proteínas CLOCK , Ritmo Circadiano , Proteínas Fúngicas , Hypocreales , Interações Microbianas , Metabolismo Secundário , Botrytis/crescimento & desenvolvimento , Botrytis/metabolismo , Botrytis/efeitos da radiação , Proteínas CLOCK/metabolismo , Ritmo Circadiano/efeitos da radiação , Proteínas Fúngicas/metabolismo , Hypocreales/crescimento & desenvolvimento , Hypocreales/metabolismo , Hypocreales/efeitos da radiação , Luz , TemperaturaRESUMO
The rapid and widespread evolution of fungicide resistance remains a challenge for crop disease management. The demethylation inhibitor (DMI) class of fungicides is a widely used chemistry for managing disease, but there has been a gradual decline in efficacy in many crop pathosystems. Reliance on DMI fungicides has increased resistance in populations of the plant pathogenic fungus Cercospora beticola worldwide. To better understand the genetic and evolutionary basis for DMI resistance in C. beticola, a genome-wide association study (GWAS) and selective sweep analysis were conducted for the first time in this species. We performed whole-genome resequencing of 190 C. beticola isolates infecting sugar beet (Beta vulgaris ssp. vulgaris). All isolates were phenotyped for sensitivity to the DMI tetraconazole. Intragenic markers on chromosomes 1, 4, and 9 were significantly associated with DMI fungicide resistance, including a polyketide synthase gene and the gene encoding the DMI target CbCYP51. Haplotype analysis of CbCYP51 identified a synonymous mutation (E170) and nonsynonymous mutations (L144F, I387M, and Y464S) associated with DMI resistance. Genome-wide scans of selection showed that several of the GWAS mutations for fungicide resistance resided in regions that have recently undergone a selective sweep. Using radial plate growth on selected media as a fitness proxy, we did not find a trade-off associated with DMI fungicide resistance. Taken together, we show that population genomic data from a crop pathogen can allow the identification of mutations conferring fungicide resistance and inform about their origins in the pathogen population.
Assuntos
Ascomicetos , Fungicidas Industriais , Ascomicetos/genética , Cercospora , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Estudo de Associação Genômica AmplaRESUMO
Cercospora beticola is a hemibiotrophic fungus that causes cercospora leaf spot disease of sugar beet (Beta vulgaris). After an initial symptomless biotrophic phase of colonization, necrotic lesions appear on host leaves as the fungus switches to a necrotrophic lifestyle. The phytotoxic secondary metabolite cercosporin has been shown to facilitate fungal virulence for several Cercospora spp. However, because cercosporin production and subsequent cercosporin-initiated formation of reactive oxygen species is light-dependent, cell death evocation by this toxin is only fully ensured during a period of light. Here, we report the discovery of the effector protein CbNip1 secreted by C. beticola that causes enhanced necrosis in the absence of light and, therefore, may complement light-dependent necrosis formation by cercosporin. Infiltration of CbNip1 protein into sugar beet leaves revealed that darkness is essential for full CbNip1-triggered necrosis, as light exposure delayed CbNip1-triggered host cell death. Gene expression analysis during host infection shows that CbNip1 expression is correlated with symptom development in planta. Targeted gene replacement of CbNip1 leads to a significant reduction in virulence, indicating the importance of CbNip1 during colonization. Analysis of 89 C. beticola genomes revealed that CbNip1 resides in a region that recently underwent a selective sweep, suggesting selection pressure exists to maintain a beneficial variant of the gene. Taken together, CbNip1 is a crucial effector during the C. beticola-sugar beet disease process.
Assuntos
Beta vulgaris/microbiologia , Cercospora/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico/genética , Perileno/análogos & derivados , Doenças das Plantas/microbiologia , Cercospora/crescimento & desenvolvimento , Cercospora/patogenicidade , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno , Necrose , Perileno/metabolismo , Fenótipo , Filogenia , Folhas de Planta/microbiologia , Virulência , Fatores de VirulênciaRESUMO
Cercospora leaf spot, caused by the fungal pathogen Cercospora beticola, is the most destructive foliar disease of sugar beet worldwide. This review discusses C. beticola genetics, genomics, and biology and summarizes our current understanding of the molecular interactions that occur between C. beticola and its sugar beet host. We highlight the known virulence arsenal of C. beticola as well as its ability to overcome currently used disease management strategies. Finally, we discuss future prospects for the study and management of C. beticola infections in the context of newly employed molecular tools to uncover additional information regarding the biology of this pathogen. TAXONOMY: Cercospora beticola Sacc.; Kingdom Fungi, Phylum Ascomycota, Class Dothideomycetes, Order Capnodiales, Family Mycosphaerellaceae, Genus Cercospora. HOST RANGE: Well-known pathogen of sugar beet (Beta vulgaris subsp. vulgaris) and most species of the Beta genus. Reported as pathogenic on other members of the Chenopodiaceae (e.g., lamb's quarters, spinach) as well as members of the Acanthaceae (e.g., bear's breeches), Apiaceae (e.g., Apium), Asteraceae (e.g., chrysanthemum, lettuce, safflower), Brassicaceae (e.g., wild mustard), Malvaceae (e.g., Malva), Plumbaginaceae (e.g., Limonium), and Polygonaceae (e.g., broad-leaved dock) families. DISEASE SYMPTOMS: Leaves infected with C. beticola exhibit circular lesions that are coloured tan to grey in the centre and are often delimited by tan-brown to reddish-purple rings. As disease progresses, spots can coalesce to form larger necrotic areas, causing severely infected leaves to wither and die. At the centre of these spots are black spore-bearing structures (pseudostromata). Older leaves often show symptoms first and younger leaves become infected as the disease progresses. MANAGEMENT: Application of a mixture of fungicides with different modes of action is currently performed although elevated resistance has been documented in most employed fungicide classes. Breeding for high-yielding cultivars with improved host resistance is an ongoing effort and prudent cultural practices, such as crop rotation, weed host management, and cultivation to reduce infested residue levels, are widely used to manage disease. USEFUL WEBSITE: https://www.ncbi.nlm.nih.gov/genome/11237?genome_assembly_id=352037.