Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
J Neuroeng Rehabil ; 21(1): 105, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907255

RESUMO

BACKGROUND: The ankle is usually highly effective in modulating the swing foot's trajectory to ensure safe ground clearance but there are few reports of ankle kinetics and mechanical energy exchange during the gait cycle swing phase. Previous work has investigated ankle swing mechanics during normal walking but with developments in devices providing dorsiflexion assistance, it is now essential to understand the minimal kinetic requirements for increasing ankle dorsiflexion, particularly for devices employing energy harvesting or utilizing lighter and lower power energy sources or actuators. METHODS: Using a real-time treadmill-walking biofeedback technique, swing phase ankle dorsiflexion was experimentally controlled to increase foot-ground clearance by 4 cm achieved via increased ankle dorsiflexion. Swing phase ankle moments and dorsiflexor muscle forces were estimated using AnyBody modeling system. It was hypothesized that increasing foot-ground clearance by 4 cm, employing only the ankle joint, would require significantly higher dorsiflexion moments and muscle forces than a normal walking control condition. RESULTS: Results did not confirm significantly increased ankle moments with augmented dorsiflexion, with 0.02 N.m/kg at toe-off reducing to zero by the end of swing. Tibialis Anterior muscle force incremented significantly from 2 to 4 N/kg after toe-off, due to coactivation with the Soleus. To ensure an additional 4 cm mid swing foot-ground clearance, an estimated additional 0.003 Joules/kg is required to be released immediately after toe-off. CONCLUSION: This study highlights the interplay between ankle moments, muscle forces, and energy demands during swing phase ankle dorsiflexion, offering insights for the design of ankle assistive technologies. External devices do not need to deliver significantly greater ankle moments to increase ankle dorsiflexion but, they should offer higher mechanical power to provide rapid bursts of energy to facilitate quick dorsiflexion transitions before reaching Minimum Foot Clearance event. Additionally, for ankle-related bio-inspired devices incorporating artificial muscles or humanoid robots that aim to replicate natural ankle biomechanics, the inclusion of supplementary Tibialis Anterior forces is crucial due to Tibialis Anterior and Soleus co-activation. These design strategies ensures that ankle assistive technologies are both effective and aligned with the biomechanical realities of human movement.


Assuntos
Articulação do Tornozelo , Tornozelo , Músculo Esquelético , Tecnologia Assistiva , Humanos , Fenômenos Biomecânicos , Masculino , Adulto , Feminino , Articulação do Tornozelo/fisiologia , Tornozelo/fisiologia , Músculo Esquelético/fisiologia , Caminhada/fisiologia , Marcha/fisiologia , Adulto Jovem , Pé/fisiologia , Desenho de Equipamento , Biorretroalimentação Psicológica/instrumentação , Biorretroalimentação Psicológica/métodos , Cinética
2.
Trials ; 20(1): 317, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31151480

RESUMO

BACKGROUND: The risk of falling is significantly higher in people with chronic stroke and it is, therefore, important to design interventions to improve mobility and decrease falls risk. Minimum toe clearance (MTC) is the key gait cycle event for predicting tripping-falls because it occurs mid-swing during the walking cycle where forward velocity of the foot is maximum. High forward velocity coupled with low MTC increases the probability of unanticipated foot-ground contacts. Training procedures to increase toe-ground clearance (MTC) have potential, therefore, as a falls-prevention intervention. The aim of this project is to determine whether augmented sensory information via real-time visual biofeedback during gait training can increase MTC. METHODS: Participants will be aged > 18 years, have sustained a single stroke (ischemic or hemorrhagic) at least six months previously, able to walk 50 m independently, and capable of informed consent. Using a secure web-based application (REDCap), 150 participants will be randomly assigned to either no-feedback (Control) or feedback (Experimental) groups; all will receive 10 sessions of treadmill training for up to 10 min at a self-selected speed over 5-6 weeks. The intervention group will receive real-time, visual biofeedback of MTC during training and will be asked to modify their gait pattern to match a required "target" criterion. Biofeedback is continuous for the first six sessions then progressively reduced (faded) across the remaining four sessions. Control participants will walk on the treadmill without biofeedback. Gait assessments are conducted at baseline, immediately following the final training session and then during follow-up, at one, three, and six months. The primary outcome measure is MTC. Monthly falls calendars will also be collected for 12 months from enrolment. DISCUSSION: The project will contribute to understanding how stroke-related changes to sensory and motor processes influence gait biomechanics and associated tripping risk. The research findings will guide our work in gait rehabilitation following stroke and may reduce falls rates. Treadmill training procedures incorporating continuous real-time feedback may need to be modified to accommodate stroke patients who have greater difficulties with treadmill walking. TRIAL REGISTRATION: Australia New Zealand Clinical Trials Registry, ACTRN12617000250336 . Registered on 17 February 2017.


Assuntos
Acidentes por Quedas/prevenção & controle , Marcha/fisiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/complicações , Caminhada/fisiologia , Biorretroalimentação Psicológica , Gerenciamento de Dados , Humanos , Avaliação de Resultados em Cuidados de Saúde , Tamanho da Amostra , Dedos do Pé/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA