Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Atmos Meas Tech ; 9: 133-158, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29263764

RESUMO

The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) aboard the Envisat satellite provided measurements from August 2002 until April 2012. SCIAMACHY measured the scattered or direct sunlight using different observation geometries. The limb viewing geometry allows the retrieval of water vapour at about 10-25 km height from the near-infrared spectral range (1353-1410 nm). These data cover the upper troposphere and lower stratosphere (UTLS), a region in the atmosphere which is of special interest for a variety of dynamical and chemical processes as well as for the radiative forcing. Here, the latest data version of water vapour (V3.01) from SCIAMACHY limb measurements is presented and validated by comparisons with data sets from other satellite and in situ measurements. Considering retrieval tests and the results of these comparisons, the V3.01 data are reliable from about 11 to 23 km and the best results are found in the middle of the profiles between about 14 and 20 km. Above 20 km in the extra tropics V3.01 is drier than all other data sets. Additionally, for altitudes above about 19 km, the vertical resolution of the retrieved profile is not sufficient to resolve signals with a short vertical structure like the tape recorder. Below 14 km, SCIAMACHY water vapour V3.01 is wetter than most collocated data sets, but the high variability of water vapour in the troposphere complicates the comparison. For 14-20 km height, the expected errors from the retrieval and simulations and the mean differences to collocated data sets are usually smaller than 10 % when the resolution of the SCIAMACHY data is taken into account. In general, the temporal changes agree well with collocated data sets except for the Northern Hemisphere extratropical stratosphere, where larger differences are observed. This indicates a possible drift in V3.01 most probably caused by the incomplete treatment of volcanic aerosols in the retrieval. In all other regions a good temporal stability is shown. In the tropical stratosphere an increase in water vapour is found between 2002 and 2012, which is in agreement with other satellite data sets for overlapping time periods.

2.
J Geophys Res Atmos ; 119(4): 1915-1935, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-28845379

RESUMO

Acquiring accurate measurements of water vapor at the low mixing ratios (< 10 ppm) encountered in the upper troposphere and lower stratosphere (UT/LS) has proven to be a significant analytical challenge evidenced by persistent disagreements between high-precision hygrometers. These disagreements have caused uncertainties in the description of the physical processes controlling dehydration of air in the tropical tropopause layer and entry of water into the stratosphere and have hindered validation of satellite water vapor retrievals. A 2011 airborne intercomparison of a large group of in situ hygrometers onboard the NASA WB-57F high-altitude research aircraft and balloons has provided an excellent opportunity to evaluate progress in the scientific community toward improved measurement agreement. In this work we intercompare the measurements from the Midlatitude Airborne Cirrus Properties Experiment (MACPEX) and discuss the quality of agreement. Differences between values reported by the instruments were reduced in comparison to some prior campaigns but were nonnegligible and on the order of 20% (0.8 ppm). Our analysis suggests that unrecognized errors in the quantification of instrumental background for some or all of the hygrometers are a likely cause. Until these errors are understood, differences at this level will continue to somewhat limit our understanding of cirrus microphysical processes and dehydration in the tropical tropopause layer.

3.
J Geophys Res Atmos ; 118(19): 11269-11284, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29263978

RESUMO

Thirty years of balloon-borne measurements over Boulder (40°N, 105°W) are used to investigate the water vapor trend in the tropopause region. This analysis extends previously published trends, usually focusing on altitudes greater than 16 km, to lower altitudes. Two new concepts are applied: (1) Trends are presented in a thermal tropopause (TP) relative coordinate system from -2 km below to 10 km above the TP, and (2) sonde profiles are selected according to TP height. Tropical (TP z > 14 km), extratropical (TP z < 12 km), and transitional air mass types (12 km < TP z < 14 km) reveal three different water vapor reservoirs. The analysis based on these concepts reduces the dynamically induced water vapor variability at the TP and principally favors refined water vapor trend studies in the upper troposphere and lower stratosphere. Nonetheless, this study shows how uncertain trends are at altitudes -2 to +4 km around the TP. This uncertainty in turn has an influence on the uncertainty and interpretation of water vapor radiative effects at the TP, which are locally estimated for the 30 year period to be of uncertain sign. The much discussed decrease in water vapor at the beginning of 2001 is not detectable between -2 and 2 km around the TP. On lower stratospheric isentropes, the water vapor change at the beginning of 2001 is more intense for extratropical than for tropical air mass types. This suggests a possible link with changing dynamics above the jet stream such as changes in the shallow branch of the Brewer-Dobson circulation.

4.
Environ Sci Technol ; 35(24): 4881-5, 2001 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-11775165

RESUMO

Although water vapor is one of the most important and certainly the most variable minor constituent of the atmosphere, accurate measurements of p(H20) with high time resolution are difficult, particularly in the cold upper troposphere/lower stratosphere. This work demonstrates that a diode laser-based photoacoustic (PA) water vapor detector is a viable alternative to current water vapor sensors for airborne measurements. The PA system was compared with a high-quality frost point hygrometer (FPH) and with a Lyman-alpha hygrometer in the pressure range of 1000-100 hPa at frost point temperatures between 202 and 216 K. These conditions were simulated in a large environmental chamberfor 14 h. Simultaneous measurements with the three instruments agreed within 6%. Nitric acid vapor interferes with the FPH measurements at low frost point temperatures but does not affect the other instruments. The sensitivity of the PA system is already sufficient for measurements in the upper troposphere, and straightforward improvements can extend its useful range above the tropopause. Rugged construction, extreme simplicity, small size, and potential for long-term automatic operation make the PA system potentially suitable for airborne measurements.


Assuntos
Acústica/instrumentação , Atmosfera/análise , Monitoramento Ambiental/métodos , Água/análise , Algoritmos , Pressão Atmosférica , Temperatura Baixa , Luz , Ácido Nítrico/análise , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA